Is there a substitution, so that the following recurrence relation can be solved using the given version of the master theorem?
$$ T(n) = 2T(n/2) + \log n $$
Let $a,b \in \mathbb{N}$, where $b > 1$, let $g\colon \mathbb{N} \to \mathbb{N}$ belong to $\Theta(n^c)$, and suppose that
- $t(1) = g(1)$.
- $t(n) = at(n/b) + g(b)$.
Then the following hold:
- If $a < b^c$ then $t(n) \in \Theta(n^c)$.
- If $a = b^c$ then $t(n) \in \Theta(n^c\log n)$.
- If $a > b^c$ then $t(n) \in \Theta(n^{(\log a)/(\log b)})$.
Considering $S(m) = S(m - 1) + m$ instead of the original recurrence relation turned out to be not very helpful.