the scheme of iteration ?
Here is the scheme of iteration : for $g : \mathbb{N}^p\to \mathbb{N}$ and $h:\mathbb{N}^{p+1}\to \mathbb{N}$ two primitive recursive functions we associate $f: \mathbb{N}^{p+1}\to \mathbb{N}$ defined by :
$f(\bar a, 0)=g(\bar a)\\ f(\bar a, x+1)=h(\bar a, f(\bar a, x)).$
Here is my attempt :
Let consider a primitive recursive function $F: \mathbb{N}^{p+1}\to \mathbb{N}$.
Then by the primitive recursion : $F(\bar a,0))=k(\bar a) \\ F(\bar a, x+1)= l(\bar a, x, F(\bar a,x))$ where $k$ and $l$ are recursive primitive functions.
We want $F$ to check the scheme of iteration. First we can take $k\equiv g$ and then how can make a link with $h$ and $l$ ?
Thanks in advance !