Hint 1
If we have a cell $a_{i,j}$ which is duplicate to some other cell $a_{i, j_1}$ in its row, and some other cell $a_{i_1, j}$ in its column; we can always remove this duplicacy by only changing $a_{i,j}$. This is because the maximum number of unique numbers in the row $\cup$ column are $2(n-1)$ and we can select from $2n$ numbers, leaving us with a choice of atleast $2$ numbers.
Hint 2
Following the above hint, the crux of the problem remains on how to optimize number of changes on $(i, j)$'s where $a_{i,j}$ is duplicate both in the row and column. If the frequency of number $k$ in row $i$ is $f^r_{i, k}$ and in column $j$ it is $f^c_{j, k}$, then the answer is
$$\sum_{k=1}^{2n} \left( \sum_{i=1}^{n} \max(f^r_{i, k}-1, 0) + \sum_{j=1}^{n} \max(f^c_{j, k}-1, 0) - g(k) \right) $$
where $g(k)$ is some number produced by optimising on the common cells. Note we can't just add all the number of common cells as $g(k)$ (take the counter example of $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$)
Hint 3
To compute $g(k)$, make a weighted directed graph $G=(V, E)$ with $$\begin{split} V&=\{S\} \\ &\cup \{{r_1}, {r_2}, \dots {r_n} \} \\ &\cup \{c_1, c_2, \dots c_n\} \\ &\cup \{T\} \end{split}$$ and $$\begin{split} E&=\{(S, r_i, \max(f^r_{i, k}-1, 0)) : \forall 1\le i \le n\} \\ &\cup \{(r_i, c_j, 1): \forall 1\le i, j \le n \text{ if } a_{i,j} = k\} \\ &\cup \{(c_j, T, \max(f^c_{j, k}-1, 0)) : \forall 1\le j \le n\} \end{split}$$
Then the max flow of this graph is $g(k)$
Example
Consider $n=5$ and the table to be $$A = \begin{bmatrix} 1 & 2 & 1 & 2 & 1 \\ 2 & 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 2 & 1 \\ 3 & 1 & 2 & 9 & 3 \\ 2 & 2 & 2 & 2 & 2 \\ \end{bmatrix}$$
For $k\in \{4, 5 ,6 ,7 ,8, 10\}$, we don't see a single cell $a_{i,j} =k$. So $$\begin{split} h(k) &= \sum_{i=1}^{n} \max(f^r_{i, k}-1, 0) + \sum_{j=1}^{n} \max(f^c_{j, k}-1, 0) - g(k) \\ &=0 \end{split}$$
For $k=9$, we see only a single cell $a_{4,4} = 9$. So $h(9) = 0$ too.
$k=3$ is also trivial with $h(3) = 1$
$k=2$'s graph $G$ has a max flow of $6$ (as seen in the image below)
So $$\begin{split} h(2) &= \sum_{i=1}^{n} \max(f^r_{i, k}-1, 0) + \sum_{j=1}^{n} \max(f^c_{j, k}-1, 0) - g(k) \\ &= 6 + 6 - 6 \\ &=6 \end{split}$$
$k=1$'s graph $G$ has a max flow of also $6$ (as seen in the image below)
So $$\begin{split} h(1) &= \sum_{i=1}^{n} \max(f^r_{i, k}-1, 0) + \sum_{j=1}^{n} \max(f^c_{j, k}-1, 0) - g(k) \\ &= 7 + 6 - 6 \\ &=7 \end{split}$$
So total number of changes required is $7 + 6 + 1 = 14$, as shown in the below table. $$ \begin{bmatrix} \color{red} 4 & 2 & \color{red} 3 & \color{red} 5 & 1 \\ 2 & \color{red} 3 & \color{red} 4 & 1 & \color{red} 5 \\ \color{red} 3 & \color{red} 4 & 1 & 2 & \color{red} 6 \\ \color{red} 5 & 1 & 2 & 9 & 3 \\ \color{red} 1 & \color{red} 5 & \color{red} 6 & \color{red} 3 & 2 \\ \end{bmatrix} $$
Algorithm runtime analysis
For each number $k$, let $f_k$ denote the total number of cells $a_{i, j} =k$ in the table.
Time complexity of
- Finding $f^r_{i, k}$ and $f^c_{j, k}$ for all $i, j, k$ is $\mathcal{O}(n^2)$
- Calculating max flow of graph $G$ for $k$ using ford fulkerson is $\mathcal{O}(EF) = \mathcal{O}((n+f_k) f_k)$ in worst case, but closer to $\mathcal{O}(n + f_k)$ in practice.
Then the time complexity is $$\begin{split} T &= \mathcal{O}(n^2) + \sum_{k=1}^{k=2n}( 2 \cdot \mathcal{O}(n) + \mathcal{O}(n + f_k)) \\ &= \mathcal{O}(n^2) + \mathcal{O} \left( \sum_{k=1}^{k=2n} f_k \right) \\ &= \mathcal{O}(n^2) \end{split}$$