from sklearn.model_selection import GridSearchCV svm2=SVC() grid={ 'C': [0.1, 1, 10, 100, 1000], 'kernel': ['linear', 'poly', 'rbf', 'sigmoid'], 'gamma': [1, 0.1, 0.01, 0.001, 0.0001] } svm_grid=GridSearchCV(estimator=svm2,param_grid=grid,cv=3,n_jobs=-1) svm_grid.fit(xtrain,ytrain) svm_grid.best_params_ OUTPUT
{'C': 1, 'gamma': 1, 'kernel': 'rbf'} CODE
svm_grid.score(xtrain,ytrain) 0.9884434814012278
svm_grid.score(xtest,ytest) 0.8513708513708513
My question is even after performing GridSearch why the model is still overfitting and how can I further increase the accuracy and combat overfitting .
I am facing same issues with RandomForest in Gridsearch
grid = { 'n_estimators': [10, 20, 40, 50, 100, 150, 200, 500], 'max_features': ['auto', 'sqrt'], 'max_depth': [3, 5, 7, 9, 11, 15], 'bootstrap': [True, False], } rf = RandomForestClassifier() rf_random = GridSearchCV(estimator = rf, param_grid = grid, cv = 3, verbose=2, n_jobs = -1) rf_random.fit(xtrain, ytrain) rf_random.score(xtrain,ytrain) 1.0
rf_random.score(xtest,ytest) 0.8427128427128427
I am not able to understand why is GridSearch not helping