I'm trying to use the sklearn_pandas module to extend the work I do in pandas and dip a toe into machine learning but I'm struggling with an error I don't really understand how to fix.
I was working through the following dataset on Kaggle.
It's essentially an unheadered table (1000 rows, 40 features) with floating point values.
import pandas as pdfrom sklearn import neighbors from sklearn_pandas import DataFrameMapper, cross_val_score path_train ="../kaggle/scikitlearn/train.csv" path_labels ="../kaggle/scikitlearn/trainLabels.csv" path_test = "../kaggle/scikitlearn/test.csv" train = pd.read_csv(path_train, header=None) labels = pd.read_csv(path_labels, header=None) test = pd.read_csv(path_test, header=None) mapper_train = DataFrameMapper([(list(train.columns),neighbors.KNeighborsClassifier(n_neighbors=3))]) mapper_train Output:
DataFrameMapper(features=[([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39], KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', n_neighbors=3, p=2, weights='uniform'))]) So far so good. But then I try the fit
mapper_train.fit_transform(train, labels) Output:
--------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-6-e3897d6db1b5> in <module>() ----> 1 mapper_train.fit_transform(train, labels) //anaconda/lib/python2.7/site-packages/sklearn/base.pyc in fit_transform(self, X, y, **fit_params) 409 else: 410 # fit method of arity 2 (supervised transformation) --> 411 return self.fit(X, y, **fit_params).transform(X) 412 413 //anaconda/lib/python2.7/site-packages/sklearn_pandas/__init__.pyc in fit(self, X, y) 116 for columns, transformer in self.features: 117 if transformer is not None: --> 118 transformer.fit(self._get_col_subset(X, columns)) 119 return self 120 TypeError: fit() takes exactly 3 arguments (2 given)` What am I doing wrong? While the data in this case is all the same, I'm planning to work up a workflow for mixtures categorical, nominal and floating point features and sklearn_pandas seemed to be a logical fit.