Package Methods (2.29.0)

Summary of entries of Methods for bigframes.

bigframes.bigquery.approx_top_count

approx_top_count( series: bigframes.series.Series, number: int ) -> bigframes.series.Series

Returns the approximate top elements of expression as an array of STRUCTs.

See more: bigframes.bigquery.approx_top_count

bigframes.bigquery.array_agg

array_agg( obj: groupby.SeriesGroupBy | groupby.DataFrameGroupBy, ) -> series.Series | dataframe.DataFrame

Group data and create arrays from selected columns, omitting NULLs to avoid BigQuery errors (NULLs not allowed in arrays).

See more: bigframes.bigquery.array_agg

bigframes.bigquery.array_length

array_length(series: bigframes.series.Series) -> bigframes.series.Series

Compute the length of each array element in the Series.

See more: bigframes.bigquery.array_length

bigframes.bigquery.array_to_string

array_to_string( series: bigframes.series.Series, delimiter: str ) -> bigframes.series.Series

Converts array elements within a Series into delimited strings.

See more: bigframes.bigquery.array_to_string

bigframes.bigquery.create_vector_index

create_vector_index( table_id: str, column_name: str, *, replace: bool = False, index_name: Optional[str] = None, distance_type="cosine", stored_column_names: Collection[str] = (), index_type: str = "ivf", ivf_options: Optional[Mapping] = None, tree_ah_options: Optional[Mapping] = None, session: Optional[bigframes.session.Session] = None ) -> None

Creates a new vector index on a column of a table.

See more: bigframes.bigquery.create_vector_index

bigframes.bigquery.json_extract

json_extract( input: bigframes.series.Series, json_path: str ) -> bigframes.series.Series

Extracts a JSON value and converts it to a SQL JSON-formatted STRING or JSON value.

See more: bigframes.bigquery.json_extract

bigframes.bigquery.json_extract_array

json_extract_array( input: bigframes.series.Series, json_path: str = "$" ) -> bigframes.series.Series

Extracts a JSON array and converts it to a SQL array of JSON-formatted STRING or JSON values.

See more: bigframes.bigquery.json_extract_array

bigframes.bigquery.json_extract_string_array

json_extract_string_array( input: bigframes.series.Series, json_path: str = "$", value_dtype: typing.Optional[ typing.Union[ pandas.core.arrays.boolean.BooleanDtype, pandas.core.arrays.floating.Float64Dtype, pandas.core.arrays.integer.Int64Dtype, pandas.core.arrays.string_.StringDtype, pandas.core.dtypes.dtypes.ArrowDtype, geopandas.array.GeometryDtype, typing.Literal[ "boolean", "Float64", "Int64", "int64[pyarrow]", "string", "string[pyarrow]", "timestamp[us, tz=UTC][pyarrow]", "timestamp[us][pyarrow]", "date32[day][pyarrow]", "time64[us][pyarrow]", "decimal128(38, 9)[pyarrow]", "decimal256(76, 38)[pyarrow]", "binary[pyarrow]", "duration[us][pyarrow]", ], ] ] = None, ) -> bigframes.series.Series

Extracts a JSON array and converts it to a SQL array of STRING values.

See more: bigframes.bigquery.json_extract_string_array

bigframes.bigquery.json_query

json_query( input: bigframes.series.Series, json_path: str ) -> bigframes.series.Series

Extracts a JSON value and converts it to a SQL JSON-formatted STRING or JSON value.

See more: bigframes.bigquery.json_query

bigframes.bigquery.json_query_array

json_query_array( input: bigframes.series.Series, json_path: str = "$" ) -> bigframes.series.Series

Extracts a JSON array and converts it to a SQL array of JSON-formatted STRING or JSON values.

See more: bigframes.bigquery.json_query_array

bigframes.bigquery.json_set

json_set( input: bigframes.series.Series, json_path_value_pairs: typing.Sequence[typing.Tuple[str, typing.Any]], ) -> bigframes.series.Series

Produces a new JSON value within a Series by inserting or replacing values at specified paths.

See more: bigframes.bigquery.json_set

bigframes.bigquery.json_value

json_value( input: bigframes.series.Series, json_path: str = "$" ) -> bigframes.series.Series

Extracts a JSON scalar value and converts it to a SQL STRING value.

See more: bigframes.bigquery.json_value

bigframes.bigquery.json_value_array

json_value_array( input: bigframes.series.Series, json_path: str = "$" ) -> bigframes.series.Series

Extracts a JSON array of scalar values and converts it to a SQL ARRAY<STRING> value.

See more: bigframes.bigquery.json_value_array

bigframes.bigquery.parse_json

parse_json(input: bigframes.series.Series) -> bigframes.series.Series

Converts a series with a JSON-formatted STRING value to a JSON value.

See more: bigframes.bigquery.parse_json

bigframes.bigquery.sql_scalar

sql_scalar( sql_template: str, columns: typing.Sequence[bigframes.series.Series] ) -> bigframes.series.Series

Create a Series from a SQL template.

See more: bigframes.bigquery.sql_scalar

bigframes.bigquery.st_area

st_area( series: typing.Union[ bigframes.series.Series, bigframes.geopandas.geoseries.GeoSeries ], ) -> bigframes.series.Series

Returns the area in square meters covered by the polygons in the input GEOGRAPHY.

See more: bigframes.bigquery.st_area

bigframes.bigquery.st_buffer

st_buffer( series: typing.Union[ bigframes.series.Series, bigframes.geopandas.geoseries.GeoSeries ], buffer_radius: float, num_seg_quarter_circle: float = 8.0, use_spheroid: bool = False, ) -> bigframes.series.Series

Computes a GEOGRAPHY that represents all points whose distance from the input GEOGRAPHY is less than or equal to distance meters.

See more: bigframes.bigquery.st_buffer

bigframes.bigquery.st_centroid

st_centroid( series: typing.Union[ bigframes.series.Series, bigframes.geopandas.geoseries.GeoSeries ], ) -> bigframes.series.Series

Computes the geometric centroid of a GEOGRAPHY type.

See more: bigframes.bigquery.st_centroid

bigframes.bigquery.st_convexhull

st_convexhull( series: typing.Union[ bigframes.series.Series, bigframes.geopandas.geoseries.GeoSeries ], ) -> bigframes.series.Series

Computes the convex hull of a GEOGRAPHY type.

See more: bigframes.bigquery.st_convexhull

bigframes.bigquery.st_difference

st_difference( series: typing.Union[ bigframes.series.Series, bigframes.geopandas.geoseries.GeoSeries ], other: typing.Union[ bigframes.series.Series, bigframes.geopandas.geoseries.GeoSeries, shapely.geometry.base.BaseGeometry, ], ) -> bigframes.series.Series

Returns a GEOGRAPHY that represents the point set difference of geography_1 and geography_2.

See more: bigframes.bigquery.st_difference

bigframes.bigquery.st_distance

st_distance( series: typing.Union[ bigframes.series.Series, bigframes.geopandas.geoseries.GeoSeries ], other: typing.Union[ bigframes.series.Series, bigframes.geopandas.geoseries.GeoSeries, shapely.geometry.base.BaseGeometry, ], *, use_spheroid: bool = False ) -> bigframes.series.Series

Returns the shortest distance in meters between two non-empty GEOGRAPHY objects.

See more: bigframes.bigquery.st_distance

bigframes.bigquery.st_intersection

st_intersection( series: typing.Union[ bigframes.series.Series, bigframes.geopandas.geoseries.GeoSeries ], other: typing.Union[ bigframes.series.Series, bigframes.geopandas.geoseries.GeoSeries, shapely.geometry.base.BaseGeometry, ], ) -> bigframes.series.Series

Returns a GEOGRAPHY that represents the point set intersection of the two input GEOGRAPHYs.

See more: bigframes.bigquery.st_intersection

bigframes.bigquery.st_isclosed

st_isclosed( series: typing.Union[ bigframes.series.Series, bigframes.geopandas.geoseries.GeoSeries ], ) -> bigframes.series.Series

Returns TRUE for a non-empty Geography, where each element in the Geography has an empty boundary.

See more: bigframes.bigquery.st_isclosed

bigframes.bigquery.st_length

st_length( series: typing.Union[ bigframes.series.Series, bigframes.geopandas.geoseries.GeoSeries ], *, use_spheroid: bool = False ) -> bigframes.series.Series

Returns the total length in meters of the lines in the input GEOGRAPHY.

See more: bigframes.bigquery.st_length

bigframes.bigquery.st_regionstats

st_regionstats( geography: typing.Union[ bigframes.series.Series, bigframes.geopandas.geoseries.GeoSeries ], raster_id: str, band: typing.Optional[str] = None, include: typing.Optional[str] = None, options: typing.Optional[typing.Mapping[str, typing.Union[str, int, float]]] = None, ) -> bigframes.series.Series

Returns statistics summarizing the pixel values of the raster image referenced by raster_id that intersect with geography.

See more: bigframes.bigquery.st_regionstats

bigframes.bigquery.st_simplify

st_simplify( geography: bigframes.series.Series, tolerance_meters: float ) -> bigframes.series.Series

Returns a simplified version of the input geography.

See more: bigframes.bigquery.st_simplify

bigframes.bigquery.struct

struct(value: dataframe.DataFrame) -> series.Series

Takes a DataFrame and converts it into a Series of structs with each struct entry corresponding to a DataFrame row and each struct field corresponding to a DataFrame column.

See more: bigframes.bigquery.struct

bigframes.bigquery.to_json

to_json(input: bigframes.series.Series) -> bigframes.series.Series

Converts a series with a JSON value to a JSON-formatted STRING value.

See more: bigframes.bigquery.to_json

bigframes.bigquery.to_json_string

to_json_string(input: bigframes.series.Series) -> bigframes.series.Series

Converts a series to a JSON-formatted STRING value.

See more: bigframes.bigquery.to_json_string

bigframes.bigquery.unix_micros

unix_micros(input: bigframes.series.Series) -> bigframes.series.Series

Converts a timestmap series to unix epoch microseconds.

See more: bigframes.bigquery.unix_micros

bigframes.bigquery.unix_millis

unix_millis(input: bigframes.series.Series) -> bigframes.series.Series

Converts a timestmap series to unix epoch milliseconds.

See more: bigframes.bigquery.unix_millis

bigframes.bigquery.unix_seconds

unix_seconds(input: bigframes.series.Series) -> bigframes.series.Series

Converts a timestmap series to unix epoch seconds.

See more: bigframes.bigquery.unix_seconds

bigframes.bigquery.vector_search

vector_search( base_table: str, column_to_search: str, query: Union[dataframe.DataFrame, series.Series], *, query_column_to_search: Optional[str] = None, top_k: Optional[int] = None, distance_type: Optional[Literal["euclidean", "cosine", "dot_product"]] = None, fraction_lists_to_search: Optional[float] = None, use_brute_force: Optional[bool] = None, allow_large_results: Optional[bool] = None ) -> dataframe.DataFrame

Conduct vector search which searches embeddings to find semantically similar entities.

See more: bigframes.bigquery.vector_search

bigframes.bigquery._operations.ai.classify

classify( input: typing.Union[ str, bigframes.series.Series, pandas.core.series.Series, typing.List[ typing.Union[str, bigframes.series.Series, pandas.core.series.Series] ], typing.Tuple[ typing.Union[str, bigframes.series.Series, pandas.core.series.Series], ... ], ], categories: tuple[str, ...] | list[str], *, connection_id: str | None = None ) -> bigframes.series.Series

Classifies a given input into one of the specified categories.

See more: bigframes.bigquery._operations.ai.classify

bigframes.bigquery._operations.ai.forecast

forecast( df: bigframes.dataframe.DataFrame | pandas.core.frame.DataFrame, *, data_col: str, timestamp_col: str, model: str = "TimesFM 2.0", id_cols: typing.Optional[typing.Iterable[str]] = None, horizon: int = 10, confidence_level: float = 0.95, context_window: int | None = None ) -> bigframes.dataframe.DataFrame

Forecast time series at future horizon.

See more: bigframes.bigquery._operations.ai.forecast

bigframes.bigquery._operations.ai.generate

generate( prompt: typing.Union[ str, bigframes.series.Series, pandas.core.series.Series, typing.List[ typing.Union[str, bigframes.series.Series, pandas.core.series.Series] ], typing.Tuple[ typing.Union[str, bigframes.series.Series, pandas.core.series.Series], ... ], ], *, connection_id: str | None = None, endpoint: str | None = None, request_type: typing.Literal["dedicated", "shared", "unspecified"] = "unspecified", model_params: typing.Optional[typing.Mapping[typing.Any, typing.Any]] = None, output_schema: typing.Optional[typing.Mapping[str, str]] = None ) -> bigframes.series.Series

Returns the AI analysis based on the prompt, which can be any combination of text and unstructured data.

See more: bigframes.bigquery._operations.ai.generate

bigframes.bigquery._operations.ai.generate_bool

generate_bool( prompt: typing.Union[ str, bigframes.series.Series, pandas.core.series.Series, typing.List[ typing.Union[str, bigframes.series.Series, pandas.core.series.Series] ], typing.Tuple[ typing.Union[str, bigframes.series.Series, pandas.core.series.Series], ... ], ], *, connection_id: str | None = None, endpoint: str | None = None, request_type: typing.Literal["dedicated", "shared", "unspecified"] = "unspecified", model_params: typing.Optional[typing.Mapping[typing.Any, typing.Any]] = None ) -> bigframes.series.Series

Returns the AI analysis based on the prompt, which can be any combination of text and unstructured data.

See more: bigframes.bigquery._operations.ai.generate_bool

bigframes.bigquery._operations.ai.generate_double

generate_double( prompt: typing.Union[ str, bigframes.series.Series, pandas.core.series.Series, typing.List[ typing.Union[str, bigframes.series.Series, pandas.core.series.Series] ], typing.Tuple[ typing.Union[str, bigframes.series.Series, pandas.core.series.Series], ... ], ], *, connection_id: str | None = None, endpoint: str | None = None, request_type: typing.Literal["dedicated", "shared", "unspecified"] = "unspecified", model_params: typing.Optional[typing.Mapping[typing.Any, typing.Any]] = None ) -> bigframes.series.Series

Returns the AI analysis based on the prompt, which can be any combination of text and unstructured data.

See more: bigframes.bigquery._operations.ai.generate_double

bigframes.bigquery._operations.ai.generate_int

generate_int( prompt: typing.Union[ str, bigframes.series.Series, pandas.core.series.Series, typing.List[ typing.Union[str, bigframes.series.Series, pandas.core.series.Series] ], typing.Tuple[ typing.Union[str, bigframes.series.Series, pandas.core.series.Series], ... ], ], *, connection_id: str | None = None, endpoint: str | None = None, request_type: typing.Literal["dedicated", "shared", "unspecified"] = "unspecified", model_params: typing.Optional[typing.Mapping[typing.Any, typing.Any]] = None ) -> bigframes.series.Series

Returns the AI analysis based on the prompt, which can be any combination of text and unstructured data.

See more: bigframes.bigquery._operations.ai.generate_int

bigframes.bigquery._operations.ai.if_

if_( prompt: typing.Union[ str, bigframes.series.Series, pandas.core.series.Series, typing.List[ typing.Union[str, bigframes.series.Series, pandas.core.series.Series] ], typing.Tuple[ typing.Union[str, bigframes.series.Series, pandas.core.series.Series], ... ], ], *, connection_id: str | None = None ) -> bigframes.series.Series

Evaluates the prompt to True or False.

See more: bigframes.bigquery.operations.ai.if

bigframes.bigquery._operations.ai.score

score( prompt: typing.Union[ str, bigframes.series.Series, pandas.core.series.Series, typing.List[ typing.Union[str, bigframes.series.Series, pandas.core.series.Series] ], typing.Tuple[ typing.Union[str, bigframes.series.Series, pandas.core.series.Series], ... ], ], *, connection_id: str | None = None ) -> bigframes.series.Series

Computes a score based on rubrics described in natural language.

See more: bigframes.bigquery._operations.ai.score

bigframes.exceptions.format_message

format_message(message: str, fill: bool = True)

Formats a warning message with ANSI color codes for the warning color.

See more: bigframes.exceptions.format_message

bigframes.ml.metrics.accuracy_score

accuracy_score( y_true: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], y_pred: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], *, normalize=True ) -> float

Accuracy classification score.

See more: bigframes.ml.metrics.accuracy_score

bigframes.ml.metrics.auc

auc( x: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], y: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], ) -> float

Compute Area Under the Curve (AUC) using the trapezoidal rule.

See more: bigframes.ml.metrics.auc

bigframes.ml.metrics.confusion_matrix

confusion_matrix( y_true: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], y_pred: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], ) -> pandas.core.frame.DataFrame

Compute confusion matrix to evaluate the accuracy of a classification.

See more: bigframes.ml.metrics.confusion_matrix

bigframes.ml.metrics.f1_score

f1_score( y_true: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], y_pred: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], *, average: typing.Optional[str] = "binary" ) -> pandas.core.series.Series

Compute the F1 score, also known as balanced F-score or F-measure.

See more: bigframes.ml.metrics.f1_score

bigframes.ml.metrics.mean_absolute_error

mean_absolute_error( y_true: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], y_pred: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], ) -> float

Mean absolute error regression loss.

See more: bigframes.ml.metrics.mean_absolute_error

bigframes.ml.metrics.mean_squared_error

mean_squared_error( y_true: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], y_pred: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], ) -> float

Mean squared error regression loss.

See more: bigframes.ml.metrics.mean_squared_error

bigframes.ml.metrics.precision_score

precision_score( y_true: bigframes.dataframe.DataFrame | bigframes.series.Series, y_pred: bigframes.dataframe.DataFrame | bigframes.series.Series, *, pos_label: int | float | bool | str = 1, average: typing.Optional[typing.Literal["binary"]] = "binary" ) -> pandas.core.series.Series | float

Compute the precision.

See more: bigframes.ml.metrics.precision_score

bigframes.ml.metrics.r2_score

r2_score( y_true: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], y_pred: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], *, force_finite=True ) -> float

:math:R^2 (coefficient of determination) regression score function.

See more: bigframes.ml.metrics.r2_score

bigframes.ml.metrics.recall_score

recall_score( y_true: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], y_pred: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], *, average: typing.Optional[str] = "binary" ) -> pandas.core.series.Series

Compute the recall.

See more: bigframes.ml.metrics.recall_score

bigframes.ml.metrics.roc_auc_score

roc_auc_score( y_true: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], y_score: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], ) -> float

Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores.

See more: bigframes.ml.metrics.roc_auc_score

bigframes.ml.metrics.roc_curve

roc_curve( y_true: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], y_score: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], *, drop_intermediate: bool = True ) -> typing.Tuple[ bigframes.series.Series, bigframes.series.Series, bigframes.series.Series ]

Compute Receiver operating characteristic (ROC).

See more: bigframes.ml.metrics.roc_curve

bigframes.ml.metrics.pairwise.paired_cosine_distances

paired_cosine_distances( X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], Y: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], ) -> bigframes.dataframe.DataFrame

Compute the paired cosine distances between X and Y.

See more: bigframes.ml.metrics.pairwise.paired_cosine_distances

bigframes.ml.metrics.pairwise.paired_euclidean_distances

paired_euclidean_distances( X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], Y: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], ) -> bigframes.dataframe.DataFrame

Compute the paired euclidean distances between X and Y.

See more: bigframes.ml.metrics.pairwise.paired_euclidean_distances

bigframes.ml.metrics.pairwise.paired_manhattan_distance

paired_manhattan_distance( X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], Y: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], ) -> bigframes.dataframe.DataFrame

Compute the L1 distances between the vectors in X and Y.

See more: bigframes.ml.metrics.pairwise.paired_manhattan_distance

bigframes.ml.model_selection.cross_validate

cross_validate( estimator, X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], y: typing.Optional[ typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ] ] = None, *, cv: typing.Optional[typing.Union[int, bigframes.ml.model_selection.KFold]] = None ) -> dict[str, list]

Evaluate metric(s) by cross-validation and also record fit/score times.

See more: bigframes.ml.model_selection.cross_validate

bigframes.ml.model_selection.train_test_split

train_test_split( *arrays: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], test_size: typing.Optional[float] = None, train_size: typing.Optional[float] = None, random_state: typing.Optional[int] = None, stratify: typing.Optional[bigframes.series.Series] = None, shuffle: bool = True ) -> typing.List[typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]]

Splits dataframes or series into random train and test subsets.

See more: bigframes.ml.model_selection.train_test_split

bigframes.pandas.clean_up_by_session_id

clean_up_by_session_id( session_id: str, location: typing.Optional[str] = None, project: typing.Optional[str] = None, ) -> None

Searches through BigQuery tables and routines and deletes the ones created during the session with the given session id.

See more: bigframes.pandas.clean_up_by_session_id

bigframes.pandas.close_session

close_session()

Start a fresh session the next time a function requires a session.

See more: bigframes.pandas.close_session

bigframes.pandas.concat

concat( objs: typing.Iterable[ typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series] ], *, axis: typing.Union[str, int] = 0, join: typing.Literal["inner", "outer"] = "outer", ignore_index: bool = False ) -> typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]

Concatenate BigQuery DataFrames objects along a particular axis.

See more: bigframes.pandas.concat

bigframes.pandas.cut

cut( x, bins: typing.Union[ int, pandas.core.indexes.interval.IntervalIndex, typing.Iterable ], *, right: typing.Optional[bool] = True, labels: typing.Optional[typing.Union[typing.Iterable[str], bool]] = None, session: typing.Optional[bigframes.session.Session] = None ) -> bigframes.series.Series

Bin values into discrete intervals.

See more: bigframes.pandas.cut

bigframes.pandas.deploy_remote_function

deploy_remote_function(func, **kwargs)

Orchestrates the creation of a BigQuery remote function that deploys immediately.

See more: bigframes.pandas.deploy_remote_function

bigframes.pandas.deploy_udf

deploy_udf(func, **kwargs)

Orchestrates the creation of a BigQuery UDF that deploys immediately.

See more: bigframes.pandas.deploy_udf

bigframes.pandas.from_glob_path

from_glob_path( path: str, *, connection: typing.Optional[str] = None, name: typing.Optional[str] = None ) -> bigframes.dataframe.DataFrame

Create a BigFrames DataFrame that contains a BigFrames Blob column from a global wildcard path.

See more: bigframes.pandas.from_glob_path

bigframes.pandas.get_default_session_id

get_default_session_id() -> str

Gets the session id that is used whenever a custom session has not been provided.

See more: bigframes.pandas.get_default_session_id

bigframes.pandas.get_dummies

get_dummies( data: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], prefix: typing.Optional[typing.Union[typing.List, dict, str]] = None, prefix_sep: typing.Optional[typing.Union[typing.List, dict, str]] = "_", dummy_na: bool = False, columns: typing.Optional[typing.List] = None, drop_first: bool = False, dtype: typing.Any = None, ) -> bigframes.dataframe.DataFrame

Convert categorical variable into dummy/indicator variables.

See more: bigframes.pandas.get_dummies

bigframes.pandas.get_global_session

get_global_session()

Gets the global session.

See more: bigframes.pandas.get_global_session

bigframes.pandas.merge

merge( left: bigframes.dataframe.DataFrame, right: bigframes.dataframe.DataFrame, how: typing.Literal["inner", "left", "outer", "right", "cross"] = "inner", on: typing.Optional[ typing.Union[typing.Sequence[typing.Hashable], typing.Hashable] ] = None, *, left_on: typing.Optional[ typing.Union[typing.Sequence[typing.Hashable], typing.Hashable] ] = None, right_on: typing.Optional[ typing.Union[typing.Sequence[typing.Hashable], typing.Hashable] ] = None, left_index: bool = False, right_index: bool = False, sort: bool = False, suffixes: tuple[str, str] = ("_x", "_y") ) -> bigframes.dataframe.DataFrame

Merge DataFrame objects with a database-style join.

See more: bigframes.pandas.merge

bigframes.pandas.qcut

qcut( x: bigframes.series.Series, q: typing.Union[int, typing.Sequence[float]], *, labels: typing.Optional[bool] = None, duplicates: typing.Literal["drop", "error"] = "error" ) -> bigframes.series.Series

Quantile-based discretization function.

See more: bigframes.pandas.qcut

bigframes.pandas.read_arrow

read_arrow(pa_table: pyarrow.lib.Table) -> bigframes.dataframe.DataFrame

Load a PyArrow Table to a BigQuery DataFrames DataFrame.

See more: bigframes.pandas.read_arrow

bigframes.pandas.read_csv

read_csv( filepath_or_buffer: typing.Union[str, typing.IO[bytes]], *, sep: typing.Optional[str] = ",", header: typing.Optional[int] = 0, names: typing.Optional[ typing.Union[ typing.MutableSequence[typing.Any], numpy.ndarray[typing.Any, typing.Any], typing.Tuple[typing.Any, ...], range, ] ] = None, index_col: typing.Optional[ typing.Union[ int, str, typing.Sequence[typing.Union[str, int]], bigframes.enums.DefaultIndexKind, typing.Literal[False], ] ] = None, usecols: typing.Optional[ typing.Union[ typing.MutableSequence[str], typing.Tuple[str, ...], typing.Sequence[int], pandas.core.series.Series, pandas.core.indexes.base.Index, numpy.ndarray[typing.Any, typing.Any], typing.Callable[[typing.Any], bool], ] ] = None, dtype: typing.Optional[typing.Dict] = None, engine: typing.Optional[ typing.Literal["c", "python", "pyarrow", "python-fwf", "bigquery"] ] = None, encoding: typing.Optional[str] = None, write_engine: typing.Literal[ "default", "bigquery_inline", "bigquery_load", "bigquery_streaming", "bigquery_write", "_deferred", ] = "default", **kwargs ) -> bigframes.dataframe.DataFrame

Loads data from a comma-separated values (csv) file into a DataFrame.

See more: bigframes.pandas.read_csv

bigframes.pandas.read_gbq

read_gbq( query_or_table: str, *, index_col: typing.Union[ typing.Iterable[str], str, bigframes.enums.DefaultIndexKind ] = (), columns: typing.Iterable[str] = (), configuration: typing.Optional[typing.Dict] = None, max_results: typing.Optional[int] = None, filters: typing.Union[ typing.Iterable[ typing.Tuple[ str, typing.Literal[ "in", "not in", "<",><=", "="=" ,"="" "!=", ">=", ">", "LIKE" ], typing.Any, ] ], typing.Iterable[ typing.Iterable[ typing.Tuple[ str, typing.Literal[ "in", "not in", "<",><=", "="=" ,"="" "!=", ">=", ">", "LIKE" ], typing.Any, ] ] ], ] = (), use_cache: typing.Optional[bool] = None, col_order: typing.Iterable[str] = (), dry_run: bool = False, allow_large_results: typing.Optional[bool] = None ) -> bigframes.dataframe.DataFrame | pandas.core.series.Series

Loads a DataFrame from BigQuery.

See more: bigframes.pandas.read_gbq

bigframes.pandas.read_gbq_function

read_gbq_function(function_name: str, is_row_processor: bool = False)

Loads a BigQuery function from BigQuery.

See more: bigframes.pandas.read_gbq_function

bigframes.pandas.read_gbq_model

read_gbq_model(model_name: str)

Loads a BigQuery ML model from BigQuery.

See more: bigframes.pandas.read_gbq_model

bigframes.pandas.read_gbq_object_table

read_gbq_object_table( object_table: str, *, name: typing.Optional[str] = None ) -> bigframes.dataframe.DataFrame

Read an existing object table to create a BigFrames Blob DataFrame.

See more: bigframes.pandas.read_gbq_object_table

bigframes.pandas.read_gbq_query

read_gbq_query( query: str, *, index_col: typing.Union[ typing.Iterable[str], str, bigframes.enums.DefaultIndexKind ] = (), columns: typing.Iterable[str] = (), configuration: typing.Optional[typing.Dict] = None, max_results: typing.Optional[int] = None, use_cache: typing.Optional[bool] = None, col_order: typing.Iterable[str] = (), filters: typing.Union[ typing.Iterable[ typing.Tuple[ str, typing.Literal[ "in", "not in", "<",><=", "="=" ,"="" "!=", ">=", ">", "LIKE" ], typing.Any, ] ], typing.Iterable[ typing.Iterable[ typing.Tuple[ str, typing.Literal[ "in", "not in", "<",><=", "="=" ,"="" "!=", ">=", ">", "LIKE" ], typing.Any, ] ] ], ] = (), dry_run: bool = False, allow_large_results: typing.Optional[bool] = None ) -> bigframes.dataframe.DataFrame | pandas.core.series.Series

Turn a SQL query into a DataFrame.

See more: bigframes.pandas.read_gbq_query

bigframes.pandas.read_gbq_table

read_gbq_table( query: str, *, index_col: typing.Union[ typing.Iterable[str], str, bigframes.enums.DefaultIndexKind ] = (), columns: typing.Iterable[str] = (), max_results: typing.Optional[int] = None, filters: typing.Union[ typing.Iterable[ typing.Tuple[ str, typing.Literal[ "in", "not in", "<",><=", "="=" ,"="" "!=", ">=", ">", "LIKE" ], typing.Any, ] ], typing.Iterable[ typing.Iterable[ typing.Tuple[ str, typing.Literal[ "in", "not in", "<",><=", "="=" ,"="" "!=", ">=", ">", "LIKE" ], typing.Any, ] ] ], ] = (), use_cache: bool = True, col_order: typing.Iterable[str] = (), dry_run: bool = False ) -> bigframes.dataframe.DataFrame | pandas.core.series.Series

Turn a BigQuery table into a DataFrame.

See more: bigframes.pandas.read_gbq_table

bigframes.pandas.read_json

read_json( path_or_buf: typing.Union[str, typing.IO[bytes]], *, orient: typing.Literal[ "split", "records", "index", "columns", "values", "table" ] = "columns", dtype: typing.Optional[typing.Dict] = None, encoding: typing.Optional[str] = None, lines: bool = False, engine: typing.Literal["ujson", "pyarrow", "bigquery"] = "ujson", write_engine: typing.Literal[ "default", "bigquery_inline", "bigquery_load", "bigquery_streaming", "bigquery_write", "_deferred", ] = "default", **kwargs ) -> bigframes.dataframe.DataFrame

Convert a JSON string to DataFrame object.

See more: bigframes.pandas.read_json

bigframes.pandas.read_pandas

read_pandas( pandas_dataframe: typing.Union[ pandas.core.frame.DataFrame, pandas.core.series.Series, pandas.core.indexes.base.Index, ], *, write_engine: typing.Literal[ "default", "bigquery_inline", "bigquery_load", "bigquery_streaming", "bigquery_write", "_deferred", ] = "default" )

Loads DataFrame from a pandas DataFrame.

See more: bigframes.pandas.read_pandas

bigframes.pandas.read_parquet

read_parquet( path: typing.Union[str, typing.IO[bytes]], *, engine: str = "auto", write_engine: typing.Literal[ "default", "bigquery_inline", "bigquery_load", "bigquery_streaming", "bigquery_write", "_deferred", ] = "default" ) -> bigframes.dataframe.DataFrame

Load a Parquet object from the file path (local or Cloud Storage), returning a DataFrame.

See more: bigframes.pandas.read_parquet

bigframes.pandas.read_pickle

read_pickle( filepath_or_buffer: FilePath | ReadPickleBuffer, compression: CompressionOptions = "infer", storage_options: StorageOptions = None, *, write_engine: constants.WriteEngineType = "default" )

Load pickled BigFrames object (or any object) from file.

See more: bigframes.pandas.read_pickle

bigframes.pandas.remote_function

remote_function( input_types: typing.Union[None, type, typing.Sequence[type]] = None, output_type: typing.Optional[type] = None, dataset: typing.Optional[str] = None, *, bigquery_connection: typing.Optional[str] = None, reuse: bool = True, name: typing.Optional[str] = None, packages: typing.Optional[typing.Sequence[str]] = None, cloud_function_service_account: str, cloud_function_kms_key_name: typing.Optional[str] = None, cloud_function_docker_repository: typing.Optional[str] = None, max_batching_rows: typing.Optional[int] = 1000, cloud_function_timeout: typing.Optional[int] = 600, cloud_function_max_instances: typing.Optional[int] = None, cloud_function_vpc_connector: typing.Optional[str] = None, cloud_function_vpc_connector_egress_settings: typing.Optional[ typing.Literal["all", "private-ranges-only", "unspecified"] ] = None, cloud_function_memory_mib: typing.Optional[int] = 1024, cloud_function_ingress_settings: typing.Literal[ "all", "internal-only", "internal-and-gclb" ] = "internal-only", cloud_build_service_account: typing.Optional[str] = None )

Decorator to turn a user defined function into a BigQuery remote function.

See more: bigframes.pandas.remote_function

bigframes.pandas.reset_session

reset_session()

Start a fresh session the next time a function requires a session.

See more: bigframes.pandas.reset_session

bigframes.pandas.to_datetime

This function converts a scalar, array-like or Series to a datetime object.

See more: bigframes.pandas.to_datetime

bigframes.pandas.to_timedelta

to_timedelta( arg, unit: typing.Optional[ typing.Literal[ "W", "w", "D", "d", "days", "day", "hours", "hour", "hr", "h", "m", "minute", "min", "minutes", "s", "seconds", "sec", "second", "ms", "milliseconds", "millisecond", "milli", "millis", "us", "microseconds", "microsecond", "µs", "micro", "micros", ] ] = None, *, session: typing.Optional[bigframes.session.Session] = None )

Converts a scalar or Series to a timedelta object.

See more: bigframes.pandas.to_timedelta

bigframes.pandas.udf

udf( *, input_types: typing.Union[None, type, typing.Sequence[type]] = None, output_type: typing.Optional[type] = None, dataset: str, bigquery_connection: typing.Optional[str] = None, name: str, packages: typing.Optional[typing.Sequence[str]] = None, max_batching_rows: typing.Optional[int] = None, container_cpu: typing.Optional[float] = None, container_memory: typing.Optional[str] = None )

Decorator to turn a Python user defined function (udf) into a BigQuery managed user-defined function.

See more: bigframes.pandas.udf

bigframes.streaming.read_gbq_table

read_gbq_table(table: str) -> bigframes.streaming.dataframe.StreamingDataFrame

Turn a BigQuery table into a StreamingDataFrame.

See more: bigframes.streaming.read_gbq_table

bigframes._config.Options.reset

reset() -> bigframes._config.Options

Reset the option settings to defaults.

See more: bigframes._config.Options.reset

bigframes._config.compute_options.ComputeOptions.assign_extra_query_labels

assign_extra_query_labels(**kwargs: typing.Any) -> None

Assigns additional custom labels for query configuration.

See more: bigframes._config.compute_options.ComputeOptions.assign_extra_query_labels

bigframes._config.sampling_options.SamplingOptions.with_disabled

with_disabled() -> bigframes._config.sampling_options.SamplingOptions

Configures whether to disable downsampling .

See more: bigframes._config.sampling_options.SamplingOptions.with_disabled

bigframes._config.sampling_options.SamplingOptions.with_max_download_size

with_max_download_size( max_rows: typing.Optional[int], ) -> bigframes._config.sampling_options.SamplingOptions

Configures the maximum download size for data sampling in MB .

See more: bigframes._config.sampling_options.SamplingOptions.with_max_download_size

bigframes._config.sampling_options.SamplingOptions.with_method

with_method( method: typing.Literal["head", "uniform"], ) -> bigframes._config.sampling_options.SamplingOptions

Configures the downsampling algorithms to be chosen from .

See more: bigframes._config.sampling_options.SamplingOptions.with_method

bigframes._config.sampling_options.SamplingOptions.with_random_state

with_random_state( state: typing.Optional[int], ) -> bigframes._config.sampling_options.SamplingOptions

Configures the seed for the uniform downsampling algorithm .

See more: bigframes._config.sampling_options.SamplingOptions.with_random_state

bigframes.core.groupby.DataFrameGroupBy.agg

agg( func=None, **kwargs ) -> typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]

Aggregate using one or more operations.

See more: bigframes.core.groupby.DataFrameGroupBy.agg

bigframes.core.groupby.DataFrameGroupBy.aggregate

aggregate( func=None, **kwargs ) -> typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]

Aggregate using one or more operations.

See more: bigframes.core.groupby.DataFrameGroupBy.aggregate

bigframes.core.groupby.DataFrameGroupBy.all

all() -> bigframes.dataframe.DataFrame

Return True if all values in the group are true, else False.

See more: bigframes.core.groupby.DataFrameGroupBy.all

bigframes.core.groupby.DataFrameGroupBy.any

any() -> bigframes.dataframe.DataFrame

Return True if any value in the group is true, else False.

See more: bigframes.core.groupby.DataFrameGroupBy.any

bigframes.core.groupby.DataFrameGroupBy.corr

corr(*, numeric_only: bool = False) -> bigframes.dataframe.DataFrame

Compute pairwise correlation of columns, excluding NA/null values.

See more: bigframes.core.groupby.DataFrameGroupBy.corr

bigframes.core.groupby.DataFrameGroupBy.count

count() -> bigframes.dataframe.DataFrame

Compute count of group, excluding missing values.

See more: bigframes.core.groupby.DataFrameGroupBy.count

bigframes.core.groupby.DataFrameGroupBy.cov

cov(*, numeric_only: bool = False) -> bigframes.dataframe.DataFrame

Compute pairwise covariance of columns, excluding NA/null values.

See more: bigframes.core.groupby.DataFrameGroupBy.cov

bigframes.core.groupby.DataFrameGroupBy.cumcount

cumcount(ascending: bool = True) -> bigframes.series.Series

Number each item in each group from 0 to the length of that group - 1.

See more: bigframes.core.groupby.DataFrameGroupBy.cumcount

bigframes.core.groupby.DataFrameGroupBy.cummax

cummax( *args, numeric_only: bool = False, **kwargs ) -> bigframes.dataframe.DataFrame

Cumulative max for each group.

See more: bigframes.core.groupby.DataFrameGroupBy.cummax

bigframes.core.groupby.DataFrameGroupBy.cummin

cummin( *args, numeric_only: bool = False, **kwargs ) -> bigframes.dataframe.DataFrame

Cumulative min for each group.

See more: bigframes.core.groupby.DataFrameGroupBy.cummin

bigframes.core.groupby.DataFrameGroupBy.cumprod

cumprod(*args, **kwargs) -> bigframes.dataframe.DataFrame

Cumulative product for each group.

See more: bigframes.core.groupby.DataFrameGroupBy.cumprod

bigframes.core.groupby.DataFrameGroupBy.cumsum

cumsum( *args, numeric_only: bool = False, **kwargs ) -> bigframes.dataframe.DataFrame

Cumulative sum for each group.

See more: bigframes.core.groupby.DataFrameGroupBy.cumsum

bigframes.core.groupby.DataFrameGroupBy.describe

describe(include: typing.Union[None, typing.Literal["all"]] = None)

Generate descriptive statistics.

See more: bigframes.core.groupby.DataFrameGroupBy.describe

bigframes.core.groupby.DataFrameGroupBy.diff

diff(periods=1) -> bigframes.series.Series

First discrete difference of element.

See more: bigframes.core.groupby.DataFrameGroupBy.diff

bigframes.core.groupby.DataFrameGroupBy.expanding

expanding(min_periods: int = 1) -> bigframes.core.window.rolling.Window

Provides expanding functionality.

See more: bigframes.core.groupby.DataFrameGroupBy.expanding

bigframes.core.groupby.DataFrameGroupBy.first

first( numeric_only: bool = False, min_count: int = -1 ) -> bigframes.dataframe.DataFrame

Compute the first entry of each column within each group.

See more: bigframes.core.groupby.DataFrameGroupBy.first

bigframes.core.groupby.DataFrameGroupBy.head

head(n: int = 5) -> bigframes.dataframe.DataFrame

Return last first n rows of each group.

See more: bigframes.core.groupby.DataFrameGroupBy.head

bigframes.core.groupby.DataFrameGroupBy.kurt

kurt(*, numeric_only: bool = False) -> bigframes.dataframe.DataFrame

Return unbiased kurtosis over requested axis.

See more: bigframes.core.groupby.DataFrameGroupBy.kurt

bigframes.core.groupby.DataFrameGroupBy.kurtosis

kurtosis(*, numeric_only: bool = False) -> bigframes.dataframe.DataFrame

Return unbiased kurtosis over requested axis.

See more: bigframes.core.groupby.DataFrameGroupBy.kurtosis

bigframes.core.groupby.DataFrameGroupBy.last

last( numeric_only: bool = False, min_count: int = -1 ) -> bigframes.dataframe.DataFrame

Compute the last entry of each column within each group.

See more: bigframes.core.groupby.DataFrameGroupBy.last

bigframes.core.groupby.DataFrameGroupBy.max

max(numeric_only: bool = False, *args) -> bigframes.dataframe.DataFrame

Compute max of group values.

See more: bigframes.core.groupby.DataFrameGroupBy.max

bigframes.core.groupby.DataFrameGroupBy.mean

mean(numeric_only: bool = False, *args) -> bigframes.dataframe.DataFrame

Compute mean of groups, excluding missing values.

See more: bigframes.core.groupby.DataFrameGroupBy.mean

bigframes.core.groupby.DataFrameGroupBy.median

median( numeric_only: bool = False, *, exact: bool = True ) -> bigframes.dataframe.DataFrame

Compute median of groups, excluding missing values.

See more: bigframes.core.groupby.DataFrameGroupBy.median

bigframes.core.groupby.DataFrameGroupBy.min

min(numeric_only: bool = False, *args) -> bigframes.dataframe.DataFrame

Compute min of group values.

See more: bigframes.core.groupby.DataFrameGroupBy.min

bigframes.core.groupby.DataFrameGroupBy.nunique

nunique() -> bigframes.dataframe.DataFrame

Return DataFrame with counts of unique elements in each position.

See more: bigframes.core.groupby.DataFrameGroupBy.nunique

bigframes.core.groupby.DataFrameGroupBy.prod

prod(numeric_only: bool = False, min_count: int = 0)

Compute prod of group values.

See more: bigframes.core.groupby.DataFrameGroupBy.prod

bigframes.core.groupby.DataFrameGroupBy.quantile

quantile( q: typing.Union[float, typing.Sequence[float]] = 0.5, *, numeric_only: bool = False ) -> bigframes.dataframe.DataFrame

Return group values at the given quantile, a la numpy.percentile.

See more: bigframes.core.groupby.DataFrameGroupBy.quantile

bigframes.core.groupby.DataFrameGroupBy.rank

rank( method="average", ascending: bool = True, na_option: str = "keep", pct: bool = False ) -> bigframes.dataframe.DataFrame

Provide the rank of values within each group.

See more: bigframes.core.groupby.DataFrameGroupBy.rank

bigframes.core.groupby.DataFrameGroupBy.rolling

rolling( window: ( int | pandas._libs.tslibs.timedeltas.Timedelta | numpy.timedelta64 | datetime.timedelta | str ), min_periods=None, on: str | None = None, closed: typing.Literal["right", "left", "both", "neither"] = "right", ) -> bigframes.core.window.rolling.Window

Returns a rolling grouper, providing rolling functionality per group.

See more: bigframes.core.groupby.DataFrameGroupBy.rolling

bigframes.core.groupby.DataFrameGroupBy.shift

shift(periods=1) -> bigframes.series.Series

Shift each group by periods observations.

See more: bigframes.core.groupby.DataFrameGroupBy.shift

bigframes.core.groupby.DataFrameGroupBy.size

size() -> typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]

Compute group sizes.

See more: bigframes.core.groupby.DataFrameGroupBy.size

bigframes.core.groupby.DataFrameGroupBy.skew

skew(*, numeric_only: bool = False) -> bigframes.dataframe.DataFrame

Return unbiased skew within groups.

See more: bigframes.core.groupby.DataFrameGroupBy.skew

bigframes.core.groupby.DataFrameGroupBy.std

std(*, numeric_only: bool = False) -> bigframes.dataframe.DataFrame

Compute standard deviation of groups, excluding missing values.

See more: bigframes.core.groupby.DataFrameGroupBy.std

bigframes.core.groupby.DataFrameGroupBy.sum

sum(numeric_only: bool = False, *args) -> bigframes.dataframe.DataFrame

Compute sum of group values.

See more: bigframes.core.groupby.DataFrameGroupBy.sum

bigframes.core.groupby.DataFrameGroupBy.value_counts

value_counts( subset: typing.Optional[typing.Sequence[typing.Hashable]] = None, normalize: bool = False, sort: bool = True, ascending: bool = False, dropna: bool = True, ) -> typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]

Return a Series or DataFrame containing counts of unique rows.

See more: bigframes.core.groupby.DataFrameGroupBy.value_counts

bigframes.core.groupby.DataFrameGroupBy.var

var(*, numeric_only: bool = False) -> bigframes.dataframe.DataFrame

Compute variance of groups, excluding missing values.

See more: bigframes.core.groupby.DataFrameGroupBy.var

bigframes.core.groupby.SeriesGroupBy.agg

agg( func=None, ) -> typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]

Aggregate using one or more operations.

See more: bigframes.core.groupby.SeriesGroupBy.agg

bigframes.core.groupby.SeriesGroupBy.aggregate

aggregate( func=None, ) -> typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]

Aggregate using one or more operations.

See more: bigframes.core.groupby.SeriesGroupBy.aggregate

bigframes.core.groupby.SeriesGroupBy.all

all() -> bigframes.series.Series

Return True if all values in the group are true, else False.

See more: bigframes.core.groupby.SeriesGroupBy.all

bigframes.core.groupby.SeriesGroupBy.any

any() -> bigframes.series.Series

Return True if any value in the group is true, else False.

See more: bigframes.core.groupby.SeriesGroupBy.any

bigframes.core.groupby.SeriesGroupBy.count

count() -> bigframes.series.Series

Compute count of group, excluding missing values.

See more: bigframes.core.groupby.SeriesGroupBy.count

bigframes.core.groupby.SeriesGroupBy.cumcount

cumcount(*args, **kwargs) -> bigframes.series.Series

Number each item in each group from 0 to the length of that group - 1.

See more: bigframes.core.groupby.SeriesGroupBy.cumcount

bigframes.core.groupby.SeriesGroupBy.cummax

cummax(*args, **kwargs) -> bigframes.series.Series

Cumulative max for each group.

See more: bigframes.core.groupby.SeriesGroupBy.cummax

bigframes.core.groupby.SeriesGroupBy.cummin

cummin(*args, **kwargs) -> bigframes.series.Series

Cumulative min for each group.

See more: bigframes.core.groupby.SeriesGroupBy.cummin

bigframes.core.groupby.SeriesGroupBy.cumprod

cumprod(*args, **kwargs) -> bigframes.series.Series

Cumulative product for each group.

See more: bigframes.core.groupby.SeriesGroupBy.cumprod

bigframes.core.groupby.SeriesGroupBy.cumsum

cumsum(*args, **kwargs) -> bigframes.series.Series

Cumulative sum for each group.

See more: bigframes.core.groupby.SeriesGroupBy.cumsum

bigframes.core.groupby.SeriesGroupBy.describe

describe(include: typing.Union[None, typing.Literal["all"]] = None)

Generate descriptive statistics.

See more: bigframes.core.groupby.SeriesGroupBy.describe

bigframes.core.groupby.SeriesGroupBy.diff

diff(periods=1) -> bigframes.series.Series

First discrete difference of element.

See more: bigframes.core.groupby.SeriesGroupBy.diff

bigframes.core.groupby.SeriesGroupBy.expanding

expanding(min_periods: int = 1) -> bigframes.core.window.rolling.Window

Provides expanding functionality.

See more: bigframes.core.groupby.SeriesGroupBy.expanding

bigframes.core.groupby.SeriesGroupBy.first

first(numeric_only: bool = False, min_count: int = -1) -> bigframes.series.Series

Compute the first entry of each column within each group.

See more: bigframes.core.groupby.SeriesGroupBy.first

bigframes.core.groupby.SeriesGroupBy.head

head(n: int = 5) -> bigframes.series.Series

Return last first n rows of each group.

See more: bigframes.core.groupby.SeriesGroupBy.head

bigframes.core.groupby.SeriesGroupBy.kurt

kurt(*args, **kwargs) -> bigframes.series.Series

Return unbiased kurtosis over requested axis.

See more: bigframes.core.groupby.SeriesGroupBy.kurt

bigframes.core.groupby.SeriesGroupBy.kurtosis

kurtosis(*args, **kwargs) -> bigframes.series.Series

Return unbiased kurtosis over requested axis.

See more: bigframes.core.groupby.SeriesGroupBy.kurtosis

bigframes.core.groupby.SeriesGroupBy.last

last(numeric_only: bool = False, min_count: int = -1) -> bigframes.series.Series

Compute the last entry of each column within each group.

See more: bigframes.core.groupby.SeriesGroupBy.last

bigframes.core.groupby.SeriesGroupBy.max

max(*args) -> bigframes.series.Series

Compute max of group values.

See more: bigframes.core.groupby.SeriesGroupBy.max

bigframes.core.groupby.SeriesGroupBy.mean

mean(*args) -> bigframes.series.Series

Compute mean of groups, excluding missing values.

See more: bigframes.core.groupby.SeriesGroupBy.mean

bigframes.core.groupby.SeriesGroupBy.median

median(*args, exact: bool = True, **kwargs) -> bigframes.series.Series

Compute median of groups, excluding missing values.

See more: bigframes.core.groupby.SeriesGroupBy.median

bigframes.core.groupby.SeriesGroupBy.min

min(*args) -> bigframes.series.Series

Compute min of group values.

See more: bigframes.core.groupby.SeriesGroupBy.min

bigframes.core.groupby.SeriesGroupBy.nunique

nunique() -> bigframes.series.Series

Return number of unique elements in the group.

See more: bigframes.core.groupby.SeriesGroupBy.nunique

bigframes.core.groupby.SeriesGroupBy.prod

prod(*args) -> bigframes.series.Series

Compute prod of group values.

See more: bigframes.core.groupby.SeriesGroupBy.prod

bigframes.core.groupby.SeriesGroupBy.quantile

quantile( q: typing.Union[float, typing.Sequence[float]] = 0.5, *, numeric_only: bool = False ) -> bigframes.series.Series

Return group values at the given quantile, a la numpy.percentile.

See more: bigframes.core.groupby.SeriesGroupBy.quantile

bigframes.core.groupby.SeriesGroupBy.rank

rank( method="average", ascending: bool = True, na_option: str = "keep", pct: bool = False ) -> bigframes.series.Series

Provide the rank of values within each group.

See more: bigframes.core.groupby.SeriesGroupBy.rank

bigframes.core.groupby.SeriesGroupBy.rolling

rolling( window: ( int | pandas._libs.tslibs.timedeltas.Timedelta | numpy.timedelta64 | datetime.timedelta | str ), min_periods=None, closed: typing.Literal["right", "left", "both", "neither"] = "right", ) -> bigframes.core.window.rolling.Window

Returns a rolling grouper, providing rolling functionality per group.

See more: bigframes.core.groupby.SeriesGroupBy.rolling

bigframes.core.groupby.SeriesGroupBy.shift

shift(periods=1) -> bigframes.series.Series

Shift index by desired number of periods.

See more: bigframes.core.groupby.SeriesGroupBy.shift

bigframes.core.groupby.SeriesGroupBy.size

size() -> bigframes.series.Series

Compute group sizes.

See more: bigframes.core.groupby.SeriesGroupBy.size

bigframes.core.groupby.SeriesGroupBy.skew

skew(*args, **kwargs) -> bigframes.series.Series

Return unbiased skew within groups.

See more: bigframes.core.groupby.SeriesGroupBy.skew

bigframes.core.groupby.SeriesGroupBy.std

std(*args, **kwargs) -> bigframes.series.Series

Compute standard deviation of groups, excluding missing values.

See more: bigframes.core.groupby.SeriesGroupBy.std

bigframes.core.groupby.SeriesGroupBy.sum

sum(*args) -> bigframes.series.Series

Compute sum of group values.

See more: bigframes.core.groupby.SeriesGroupBy.sum

bigframes.core.groupby.SeriesGroupBy.value_counts

value_counts( normalize: bool = False, sort: bool = True, ascending: bool = False, dropna: bool = True, ) -> typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]

Return a Series or DataFrame containing counts of unique rows.

See more: bigframes.core.groupby.SeriesGroupBy.value_counts

bigframes.core.groupby.SeriesGroupBy.var

var(*args, **kwargs) -> bigframes.series.Series

Compute variance of groups, excluding missing values.

See more: bigframes.core.groupby.SeriesGroupBy.var

bigframes.core.indexers.ILocDataFrameIndexer.__getitem__

__getitem__( key, ) -> typing.Union[bigframes.dataframe.DataFrame, pandas.core.series.Series]

Index dataframe using integer offsets.

See more: bigframes.core.indexers.ILocDataFrameIndexer.getitem

bigframes.core.indexers.IlocSeriesIndexer.__getitem__

__getitem__(key) -> typing.Union[typing.Any, bigframes.series.Series]

Index series using integer offsets.

See more: bigframes.core.indexers.IlocSeriesIndexer.getitem

bigframes.core.indexes.base.Index.__setitem__

__setitem__(key, value) -> None

Index objects are immutable.

See more: bigframes.core.indexes.base.Index.setitem

bigframes.core.indexes.base.Index.all

all() -> bool

Return whether all elements are Truthy.

See more: bigframes.core.indexes.base.Index.all

bigframes.core.indexes.base.Index.any

any() -> bool

Return whether any element is Truthy.

See more: bigframes.core.indexes.base.Index.any

bigframes.core.indexes.base.Index.argmax

argmax() -> int

Return int position of the largest value in the Series.

See more: bigframes.core.indexes.base.Index.argmax

bigframes.core.indexes.base.Index.argmin

argmin() -> int

Return int position of the smallest value in the series.

See more: bigframes.core.indexes.base.Index.argmin

bigframes.core.indexes.base.Index.astype

astype( dtype, *, errors: typing.Literal["raise", "null"] = "raise" ) -> bigframes.core.indexes.base.Index

Create an Index with values cast to dtypes.

See more: bigframes.core.indexes.base.Index.astype

bigframes.core.indexes.base.Index.copy

copy(name: typing.Optional[typing.Hashable] = None)

Make a copy of this object.

See more: bigframes.core.indexes.base.Index.copy

bigframes.core.indexes.base.Index.drop

drop(labels: typing.Any) -> bigframes.core.indexes.base.Index

Make new Index with passed list of labels deleted.

See more: bigframes.core.indexes.base.Index.drop

bigframes.core.indexes.base.Index.drop_duplicates

drop_duplicates(*, keep: __builtins__.str = "first") -> Index

Return Index with duplicate values removed.

See more: bigframes.core.indexes.base.Index.drop_duplicates

bigframes.core.indexes.base.Index.dropna

dropna( how: typing.Literal["all", "any"] = "any", ) -> bigframes.core.indexes.base.Index

Return Index without NA/NaN values.

See more: bigframes.core.indexes.base.Index.dropna

bigframes.core.indexes.base.Index.fillna

fillna(value=None) -> bigframes.core.indexes.base.Index

Fill NA (NULL in BigQuery) values using the specified method.

See more: bigframes.core.indexes.base.Index.fillna

bigframes.core.indexes.base.Index.from_frame

from_frame( frame: typing.Union[bigframes.series.Series, bigframes.dataframe.DataFrame], ) -> bigframes.core.indexes.base.Index

Make a MultiIndex from a DataFrame.

See more: bigframes.core.indexes.base.Index.from_frame

bigframes.core.indexes.base.Index.get_level_values

get_level_values(level) -> bigframes.core.indexes.base.Index

Return an Index of values for requested level.

See more: bigframes.core.indexes.base.Index.get_level_values

bigframes.core.indexes.base.Index.get_loc

get_loc(key) -> typing.Union[int, slice, bigframes.series.Series]

Get integer location, slice or boolean mask for requested label.

See more: bigframes.core.indexes.base.Index.get_loc

bigframes.core.indexes.base.Index.isin

isin(values) -> bigframes.core.indexes.base.Index

Return a boolean array where the index values are in values.

See more: bigframes.core.indexes.base.Index.isin

bigframes.core.indexes.base.Index.item

item()

Return the first element of the underlying data as a Python scalar.

See more: bigframes.core.indexes.base.Index.item

bigframes.core.indexes.base.Index.max

max() -> typing.Any

Return the maximum value of the Index.

See more: bigframes.core.indexes.base.Index.max

bigframes.core.indexes.base.Index.min

min() -> typing.Any

Return the minimum value of the Index.

See more: bigframes.core.indexes.base.Index.min

bigframes.core.indexes.base.Index.nunique

nunique() -> int

Return number of unique elements in the object.

See more: bigframes.core.indexes.base.Index.nunique

bigframes.core.indexes.base.Index.rename

Alter Index or MultiIndex name.

See more: bigframes.core.indexes.base.Index.rename

bigframes.core.indexes.base.Index.sort_values

sort_values( *, inplace: bool = False, ascending: bool = True, na_position: __builtins__.str = "last" ) -> Index

Return a sorted copy of the index.

See more: bigframes.core.indexes.base.Index.sort_values

bigframes.core.indexes.base.Index.to_list

to_list(*, allow_large_results: typing.Optional[bool] = None) -> list

API documentation for to_list method.

See more: bigframes.core.indexes.base.Index.to_list

bigframes.core.indexes.base.Index.to_numpy

to_numpy(dtype=None, *, allow_large_results=None, **kwargs) -> numpy.ndarray

A NumPy ndarray representing the values in this Series or Index.

See more: bigframes.core.indexes.base.Index.to_numpy

bigframes.core.indexes.base.Index.to_pandas

Gets the Index as a pandas Index.

See more: bigframes.core.indexes.base.Index.to_pandas

bigframes.core.indexes.base.Index.to_series

to_series( index: typing.Optional[bigframes.core.indexes.base.Index] = None, name: typing.Optional[typing.Hashable] = None, ) -> bigframes.series.Series

Create a Series with both index and values equal to the index keys.

See more: bigframes.core.indexes.base.Index.to_series

bigframes.core.indexes.base.Index.transpose

transpose() -> bigframes.core.indexes.base.Index

Return the transpose, which is by definition self.

See more: bigframes.core.indexes.base.Index.transpose

bigframes.core.indexes.base.Index.unique

unique( level: typing.Optional[typing.Union[typing.Hashable, int]] = None, ) -> bigframes.core.indexes.base.Index

Returns unique values in the index.

See more: bigframes.core.indexes.base.Index.unique

bigframes.core.indexes.base.Index.value_counts

value_counts( normalize: bool = False, sort: bool = True, ascending: bool = False, *, dropna: bool = True )

Return a Series containing counts of unique values.

See more: bigframes.core.indexes.base.Index.value_counts

bigframes.core.indexes.datetimes.DatetimeIndex.__setitem__

__setitem__(key, value) -> None

Index objects are immutable.

See more: bigframes.core.indexes.datetimes.DatetimeIndex.setitem

bigframes.core.indexes.datetimes.DatetimeIndex.all

all() -> bool

Return whether all elements are Truthy.

See more: bigframes.core.indexes.datetimes.DatetimeIndex.all

bigframes.core.indexes.datetimes.DatetimeIndex.any

any() -> bool

Return whether any element is Truthy.

See more: bigframes.core.indexes.datetimes.DatetimeIndex.any

bigframes.core.indexes.datetimes.DatetimeIndex.argmax

argmax() -> int

Return int position of the largest value in the Series.

See more: bigframes.core.indexes.datetimes.DatetimeIndex.argmax

bigframes.core.indexes.datetimes.DatetimeIndex.argmin

argmin() -> int

Return int position of the smallest value in the series.

See more: bigframes.core.indexes.datetimes.DatetimeIndex.argmin

bigframes.core.indexes.datetimes.DatetimeIndex.astype

astype( dtype, *, errors: typing.Literal["raise", "null"] = "raise" ) -> bigframes.core.indexes.base.Index

Create an Index with values cast to dtypes.

See more: bigframes.core.indexes.datetimes.DatetimeIndex.astype

bigframes.core.indexes.datetimes.DatetimeIndex.copy

copy(name: typing.Optional[typing.Hashable] = None)

Make a copy of this object.

See more: bigframes.core.indexes.datetimes.DatetimeIndex.copy

bigframes.core.indexes.datetimes.DatetimeIndex.drop

drop(labels: typing.Any) -> bigframes.core.indexes.base.Index

Make new Index with passed list of labels deleted.

See more: bigframes.core.indexes.datetimes.DatetimeIndex.drop

bigframes.core.indexes.datetimes.DatetimeIndex.drop_duplicates

drop_duplicates(*, keep: __builtins__.str = "first") -> Index

Return Index with duplicate values removed.

See more: bigframes.core.indexes.datetimes.DatetimeIndex.drop_duplicates

bigframes.core.indexes.datetimes.DatetimeIndex.dropna

dropna( how: typing.Literal["all", "any"] = "any", ) -> bigframes.core.indexes.base.Index

Return Index without NA/NaN values.

See more: bigframes.core.indexes.datetimes.DatetimeIndex.dropna

bigframes.core.indexes.datetimes.DatetimeIndex.fillna

fillna(value=None) -> bigframes.core.indexes.base.Index

Fill NA (NULL in BigQuery) values using the specified method.

See more: bigframes.core.indexes.datetimes.DatetimeIndex.fillna

bigframes.core.indexes.datetimes.DatetimeIndex.from_frame

from_frame( frame: typing.Union[bigframes.series.Series, bigframes.dataframe.DataFrame], ) -> bigframes.core.indexes.base.Index

Make a MultiIndex from a DataFrame.

See more: bigframes.core.indexes.datetimes.DatetimeIndex.from_frame

bigframes.core.indexes.datetimes.DatetimeIndex.get_level_values

get_level_values(level) -> bigframes.core.indexes.base.Index

Return an Index of values for requested level.

See more: bigframes.core.indexes.datetimes.DatetimeIndex.get_level_values

bigframes.core.indexes.datetimes.DatetimeIndex.get_loc

get_loc(key) -> typing.Union[int, slice, bigframes.series.Series]

Get integer location, slice or boolean mask for requested label.

See more: bigframes.core.indexes.datetimes.DatetimeIndex.get_loc

bigframes.core.indexes.datetimes.DatetimeIndex.isin

isin(values) -> bigframes.core.indexes.base.Index

Return a boolean array where the index values are in values.

See more: bigframes.core.indexes.datetimes.DatetimeIndex.isin

bigframes.core.indexes.datetimes.DatetimeIndex.item

item()

Return the first element of the underlying data as a Python scalar.

See more: bigframes.core.indexes.datetimes.DatetimeIndex.item

bigframes.core.indexes.datetimes.DatetimeIndex.max

max() -> typing.Any

Return the maximum value of the Index.

See more: bigframes.core.indexes.datetimes.DatetimeIndex.max

bigframes.core.indexes.datetimes.DatetimeIndex.min

min() -> typing.Any

Return the minimum value of the Index.

See more: bigframes.core.indexes.datetimes.DatetimeIndex.min

bigframes.core.indexes.datetimes.DatetimeIndex.nunique

nunique() -> int

Return number of unique elements in the object.

See more: bigframes.core.indexes.datetimes.DatetimeIndex.nunique

bigframes.core.indexes.datetimes.DatetimeIndex.rename

rename( name: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]], *, inplace: bool = False ) -> typing.Optional[bigframes.core.indexes.base.Index]

Alter Index or MultiIndex name.

See more: bigframes.core.indexes.datetimes.DatetimeIndex.rename

bigframes.core.indexes.datetimes.DatetimeIndex.sort_values

sort_values( *, inplace: bool = False, ascending: bool = True, na_position: __builtins__.str = "last" ) -> Index

Return a sorted copy of the index.

See more: bigframes.core.indexes.datetimes.DatetimeIndex.sort_values

bigframes.core.indexes.datetimes.DatetimeIndex.to_list

to_list(*, allow_large_results: typing.Optional[bool] = None) -> list

API documentation for to_list method.

See more: bigframes.core.indexes.datetimes.DatetimeIndex.to_list

bigframes.core.indexes.datetimes.DatetimeIndex.to_numpy

to_numpy(dtype=None, *, allow_large_results=None, **kwargs) -> numpy.ndarray

A NumPy ndarray representing the values in this Series or Index.

See more: bigframes.core.indexes.datetimes.DatetimeIndex.to_numpy

bigframes.core.indexes.datetimes.DatetimeIndex.to_pandas

to_pandas( *, allow_large_results: typing.Optional[bool] = None, dry_run: bool = False ) -> pandas.core.indexes.base.Index | pandas.core.series.Series

Gets the Index as a pandas Index.

See more: bigframes.core.indexes.datetimes.DatetimeIndex.to_pandas

bigframes.core.indexes.datetimes.DatetimeIndex.to_series

to_series( index: typing.Optional[bigframes.core.indexes.base.Index] = None, name: typing.Optional[typing.Hashable] = None, ) -> bigframes.series.Series

Create a Series with both index and values equal to the index keys.

See more: bigframes.core.indexes.datetimes.DatetimeIndex.to_series

bigframes.core.indexes.datetimes.DatetimeIndex.transpose

transpose() -> bigframes.core.indexes.base.Index

Return the transpose, which is by definition self.

See more: bigframes.core.indexes.datetimes.DatetimeIndex.transpose

bigframes.core.indexes.datetimes.DatetimeIndex.unique

unique( level: typing.Optional[typing.Union[typing.Hashable, int]] = None, ) -> bigframes.core.indexes.base.Index

Returns unique values in the index.

See more: bigframes.core.indexes.datetimes.DatetimeIndex.unique

bigframes.core.indexes.datetimes.DatetimeIndex.value_counts

value_counts( normalize: bool = False, sort: bool = True, ascending: bool = False, *, dropna: bool = True )

Return a Series containing counts of unique values.

See more: bigframes.core.indexes.datetimes.DatetimeIndex.value_counts

bigframes.core.indexes.multi.MultiIndex.__setitem__

__setitem__(key, value) -> None

Index objects are immutable.

See more: bigframes.core.indexes.multi.MultiIndex.setitem

bigframes.core.indexes.multi.MultiIndex.all

all() -> bool

Return whether all elements are Truthy.

See more: bigframes.core.indexes.multi.MultiIndex.all

bigframes.core.indexes.multi.MultiIndex.any

any() -> bool

Return whether any element is Truthy.

See more: bigframes.core.indexes.multi.MultiIndex.any

bigframes.core.indexes.multi.MultiIndex.argmax

argmax() -> int

Return int position of the largest value in the Series.

See more: bigframes.core.indexes.multi.MultiIndex.argmax

bigframes.core.indexes.multi.MultiIndex.argmin

argmin() -> int

Return int position of the smallest value in the series.

See more: bigframes.core.indexes.multi.MultiIndex.argmin

bigframes.core.indexes.multi.MultiIndex.astype

astype( dtype, *, errors: typing.Literal["raise", "null"] = "raise" ) -> bigframes.core.indexes.base.Index

Create an Index with values cast to dtypes.

See more: bigframes.core.indexes.multi.MultiIndex.astype

bigframes.core.indexes.multi.MultiIndex.copy

copy(name: typing.Optional[typing.Hashable] = None)

Make a copy of this object.

See more: bigframes.core.indexes.multi.MultiIndex.copy

bigframes.core.indexes.multi.MultiIndex.drop

drop(labels: typing.Any) -> bigframes.core.indexes.base.Index

Make new Index with passed list of labels deleted.

See more: bigframes.core.indexes.multi.MultiIndex.drop

bigframes.core.indexes.multi.MultiIndex.drop_duplicates

drop_duplicates(*, keep: __builtins__.str = "first") -> Index

Return Index with duplicate values removed.

See more: bigframes.core.indexes.multi.MultiIndex.drop_duplicates

bigframes.core.indexes.multi.MultiIndex.dropna

dropna( how: typing.Literal["all", "any"] = "any", ) -> bigframes.core.indexes.base.Index

Return Index without NA/NaN values.

See more: bigframes.core.indexes.multi.MultiIndex.dropna

bigframes.core.indexes.multi.MultiIndex.fillna

fillna(value=None) -> bigframes.core.indexes.base.Index

Fill NA (NULL in BigQuery) values using the specified method.

See more: bigframes.core.indexes.multi.MultiIndex.fillna

bigframes.core.indexes.multi.MultiIndex.from_arrays

from_arrays( arrays, sortorder: int | None = None, names=None, *, session: Optional[bigframes.session.Session] = None ) -> MultiIndex

Convert arrays to MultiIndex.

See more: bigframes.core.indexes.multi.MultiIndex.from_arrays

bigframes.core.indexes.multi.MultiIndex.from_frame

from_frame( frame: typing.Union[bigframes.series.Series, bigframes.dataframe.DataFrame], ) -> bigframes.core.indexes.base.Index

Make a MultiIndex from a DataFrame.

See more: bigframes.core.indexes.multi.MultiIndex.from_frame

bigframes.core.indexes.multi.MultiIndex.from_tuples

from_tuples( tuples: Iterable[tuple[Hashable, ...]], sortorder: int | None = None, names: Sequence[Hashable] | Hashable | None = None, *, session: Optional[bigframes.session.Session] = None ) -> MultiIndex

Convert list of tuples to MultiIndex.

See more: bigframes.core.indexes.multi.MultiIndex.from_tuples

bigframes.core.indexes.multi.MultiIndex.get_level_values

get_level_values(level) -> bigframes.core.indexes.base.Index

Return an Index of values for requested level.

See more: bigframes.core.indexes.multi.MultiIndex.get_level_values

bigframes.core.indexes.multi.MultiIndex.get_loc

get_loc(key) -> typing.Union[int, slice, bigframes.series.Series]

Get integer location, slice or boolean mask for requested label.

See more: bigframes.core.indexes.multi.MultiIndex.get_loc

bigframes.core.indexes.multi.MultiIndex.isin

isin(values) -> bigframes.core.indexes.base.Index

Return a boolean array where the index values are in values.

See more: bigframes.core.indexes.multi.MultiIndex.isin

bigframes.core.indexes.multi.MultiIndex.item

item()

Return the first element of the underlying data as a Python scalar.

See more: bigframes.core.indexes.multi.MultiIndex.item

bigframes.core.indexes.multi.MultiIndex.max

max() -> typing.Any

Return the maximum value of the Index.

See more: bigframes.core.indexes.multi.MultiIndex.max

bigframes.core.indexes.multi.MultiIndex.min

min() -> typing.Any

Return the minimum value of the Index.

See more: bigframes.core.indexes.multi.MultiIndex.min

bigframes.core.indexes.multi.MultiIndex.nunique

nunique() -> int

Return number of unique elements in the object.

See more: bigframes.core.indexes.multi.MultiIndex.nunique

bigframes.core.indexes.multi.MultiIndex.rename

rename( name: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]], *, inplace: bool = False ) -> typing.Optional[bigframes.core.indexes.base.Index]

Alter Index or MultiIndex name.

See more: bigframes.core.indexes.multi.MultiIndex.rename

bigframes.core.indexes.multi.MultiIndex.sort_values

sort_values( *, inplace: bool = False, ascending: bool = True, na_position: __builtins__.str = "last" ) -> Index

Return a sorted copy of the index.

See more: bigframes.core.indexes.multi.MultiIndex.sort_values

bigframes.core.indexes.multi.MultiIndex.to_list

to_list(*, allow_large_results: typing.Optional[bool] = None) -> list

API documentation for to_list method.

See more: bigframes.core.indexes.multi.MultiIndex.to_list

bigframes.core.indexes.multi.MultiIndex.to_numpy

to_numpy(dtype=None, *, allow_large_results=None, **kwargs) -> numpy.ndarray

A NumPy ndarray representing the values in this Series or Index.

See more: bigframes.core.indexes.multi.MultiIndex.to_numpy

bigframes.core.indexes.multi.MultiIndex.to_pandas

to_pandas( *, allow_large_results: typing.Optional[bool] = None, dry_run: bool = False ) -> pandas.core.indexes.base.Index | pandas.core.series.Series

Gets the Index as a pandas Index.

See more: bigframes.core.indexes.multi.MultiIndex.to_pandas

bigframes.core.indexes.multi.MultiIndex.to_series

to_series( index: typing.Optional[bigframes.core.indexes.base.Index] = None, name: typing.Optional[typing.Hashable] = None, ) -> bigframes.series.Series

Create a Series with both index and values equal to the index keys.

See more: bigframes.core.indexes.multi.MultiIndex.to_series

bigframes.core.indexes.multi.MultiIndex.transpose

transpose() -> bigframes.core.indexes.base.Index

Return the transpose, which is by definition self.

See more: bigframes.core.indexes.multi.MultiIndex.transpose

bigframes.core.indexes.multi.MultiIndex.unique

unique( level: typing.Optional[typing.Union[typing.Hashable, int]] = None, ) -> bigframes.core.indexes.base.Index

Returns unique values in the index.

See more: bigframes.core.indexes.multi.MultiIndex.unique

bigframes.core.indexes.multi.MultiIndex.value_counts

value_counts( normalize: bool = False, sort: bool = True, ascending: bool = False, *, dropna: bool = True )

Return a Series containing counts of unique values.

See more: bigframes.core.indexes.multi.MultiIndex.value_counts

bigframes.core.window.Window.count

count()

Calculate the window count of non-NULL observations.

See more: bigframes.core.window.Window.count

bigframes.core.window.Window.max

max()

Calculate the weighted window maximum.

See more: bigframes.core.window.Window.max

bigframes.core.window.Window.mean

mean()

Calculate the weighted window mean.

See more: bigframes.core.window.Window.mean

bigframes.core.window.Window.min

min()

Calculate the weighted window minimum.

See more: bigframes.core.window.Window.min

bigframes.core.window.Window.std

std()

Calculate the weighted window standard deviation.

See more: bigframes.core.window.Window.std

bigframes.core.window.Window.sum

sum()

Calculate the weighted window sum.

See more: bigframes.core.window.Window.sum

bigframes.core.window.Window.var

var()

Calculate the weighted window variance.

See more: bigframes.core.window.Window.var

bigframes.dataframe.DataFrame.__abs__

__abs__() -> bigframes.dataframe.DataFrame

Return the absolute value of the argument.

See more: bigframes.dataframe.DataFrame.abs

bigframes.dataframe.DataFrame.__add__

__add__(other) -> bigframes.dataframe.DataFrame

Get addition of DataFrame and other, column-wise, using arithmetic operator +.

See more: bigframes.dataframe.DataFrame.add

bigframes.dataframe.DataFrame.__and__

__and__( other: bool | int | bigframes.series.Series, ) -> bigframes.dataframe.DataFrame

Get bitwise AND of DataFrame and other, element-wise, using operator &.

See more: bigframes.dataframe.DataFrame.and

bigframes.dataframe.DataFrame.__array__

__array__(dtype=None, copy: typing.Optional[bool] = None) -> numpy.ndarray

Returns the rows as NumPy array.

See more: bigframes.dataframe.DataFrame.array

bigframes.dataframe.DataFrame.__array_ufunc__

__array_ufunc__( ufunc: numpy.ufunc, method: str, *inputs, **kwargs ) -> bigframes.dataframe.DataFrame

Used to support numpy ufuncs.

See more: bigframes.dataframe.DataFrame.array_ufunc

bigframes.dataframe.DataFrame.__bool__

__bool__()

Returns the truth value of the object.

See more: bigframes.dataframe.DataFrame.bool

bigframes.dataframe.DataFrame.__eq__

__eq__(other) -> bigframes.dataframe.DataFrame

Check equality of DataFrame and other, element-wise, using logical operator ==.

See more: bigframes.dataframe.DataFrame.eq

bigframes.dataframe.DataFrame.__floordiv__

__floordiv__(other)

Get integer division of DataFrame by other, using arithmetic operator //.

See more: bigframes.dataframe.DataFrame.floordiv

bigframes.dataframe.DataFrame.__ge__

__ge__(other) -> bigframes.dataframe.DataFrame

Check whether DataFrame is greater than or equal to other, element-wise, using logical operator >=.

See more: bigframes.dataframe.DataFrame.ge

bigframes.dataframe.DataFrame.__getitem__

Gets the specified column(s) from the DataFrame.

See more: bigframes.dataframe.DataFrame.getitem

bigframes.dataframe.DataFrame.__gt__

__gt__(other) -> bigframes.dataframe.DataFrame

Check whether DataFrame is greater than other, element-wise, using logical operator >.

See more: bigframes.dataframe.DataFrame.gt

bigframes.dataframe.DataFrame.__invert__

__invert__() -> bigframes.dataframe.DataFrame

Returns the bitwise inversion of the DataFrame, element-wise using operator ````.

See more: bigframes.dataframe.DataFrame.invert

bigframes.dataframe.DataFrame.__le__

__le__(other) -> bigframes.dataframe.DataFrame

Check whether DataFrame is less than or equal to other, element-wise, using logical operator <=.

See more: bigframes.dataframe.DataFrame.le

bigframes.dataframe.DataFrame.__len__

__len__()

Returns number of rows in the DataFrame, serves len operator.

See more: bigframes.dataframe.DataFrame.len

bigframes.dataframe.DataFrame.__lt__

__lt__(other) -> bigframes.dataframe.DataFrame

Check whether DataFrame is less than other, element-wise, using logical operator <.

See more: bigframes.dataframe.DataFrame.lt

bigframes.dataframe.DataFrame.__matmul__

__matmul__(other) -> bigframes.dataframe.DataFrame

Compute the matrix multiplication between the DataFrame and other, using operator @.

See more: bigframes.dataframe.DataFrame.matmul

bigframes.dataframe.DataFrame.__mod__

__mod__(other)

Get modulo of DataFrame with other, element-wise, using operator %.

See more: bigframes.dataframe.DataFrame.mod

bigframes.dataframe.DataFrame.__mul__

__mul__(other)

Get multiplication of DataFrame with other, element-wise, using operator *.

See more: bigframes.dataframe.DataFrame.mul

bigframes.dataframe.DataFrame.__ne__

__ne__(other) -> bigframes.dataframe.DataFrame

Check inequality of DataFrame and other, element-wise, using logical operator !=.

See more: bigframes.dataframe.DataFrame.ne

bigframes.dataframe.DataFrame.__nonzero__

__nonzero__()

Returns the truth value of the object.

See more: bigframes.dataframe.DataFrame.nonzero

bigframes.dataframe.DataFrame.__or__

__or__( other: bool | int | bigframes.series.Series, ) -> bigframes.dataframe.DataFrame

Get bitwise OR of DataFrame and other, element-wise, using operator |.

See more: bigframes.dataframe.DataFrame.or

bigframes.dataframe.DataFrame.__pow__

__pow__(other)

Get exponentiation of DataFrame with other, element-wise, using operator **.

See more: bigframes.dataframe.DataFrame.pow

bigframes.dataframe.DataFrame.__radd__

__radd__(other) -> bigframes.dataframe.DataFrame

Get addition of other and DataFrame, element-wise (binary operator +).

See more: bigframes.dataframe.DataFrame.radd

bigframes.dataframe.DataFrame.__rand__

__rand__( other: bool | int | bigframes.series.Series, ) -> bigframes.dataframe.DataFrame

Get bitwise AND of DataFrame and other, element-wise, using operator &.

See more: bigframes.dataframe.DataFrame.rand

bigframes.dataframe.DataFrame.__repr__

__repr__() -> str

Converts a DataFrame to a string.

See more: bigframes.dataframe.DataFrame.repr

bigframes.dataframe.DataFrame.__rfloordiv__

__rfloordiv__(other)

Get integer divison of other by DataFrame.

See more: bigframes.dataframe.DataFrame.rfloordiv

bigframes.dataframe.DataFrame.__rmod__

__rmod__(other)

Get integer divison of other by DataFrame.

See more: bigframes.dataframe.DataFrame.rmod

bigframes.dataframe.DataFrame.__rmul__

__rmul__(other)

Get multiplication of DataFrame with other, element-wise, using operator *.

See more: bigframes.dataframe.DataFrame.rmul

bigframes.dataframe.DataFrame.__ror__

__ror__( other: bool | int | bigframes.series.Series, ) -> bigframes.dataframe.DataFrame

Get bitwise OR of DataFrame and other, element-wise, using operator |.

See more: bigframes.dataframe.DataFrame.ror

bigframes.dataframe.DataFrame.__rpow__

__rpow__(other)

Get exponentiation of other with DataFrame, element-wise, using operator **.

See more: bigframes.dataframe.DataFrame.rpow

bigframes.dataframe.DataFrame.__rsub__

__rsub__(other)

Get subtraction of DataFrame from other, element-wise, using operator -.

See more: bigframes.dataframe.DataFrame.rsub

bigframes.dataframe.DataFrame.__rtruediv__

__rtruediv__(other)

Get division of other by DataFrame, element-wise, using operator /.

See more: bigframes.dataframe.DataFrame.rtruediv

bigframes.dataframe.DataFrame.__rxor__

__rxor__( other: bool | int | bigframes.series.Series, ) -> bigframes.dataframe.DataFrame

Get bitwise XOR of DataFrame and other, element-wise, using operator ^.

See more: bigframes.dataframe.DataFrame.rxor

bigframes.dataframe.DataFrame.__setitem__

__setitem__( key: str | list[str] | pandas.Index, value: SingleItemValue | MultiItemValue )

Modify or insert a column into the DataFrame.

See more: bigframes.dataframe.DataFrame.setitem

bigframes.dataframe.DataFrame.__sub__

__sub__(other)

Get subtraction of other from DataFrame, element-wise, using operator -.

See more: bigframes.dataframe.DataFrame.sub

bigframes.dataframe.DataFrame.__truediv__

__truediv__(other)

Get division of DataFrame by other, element-wise, using operator /.

See more: bigframes.dataframe.DataFrame.truediv

bigframes.dataframe.DataFrame.__xor__

__xor__( other: bool | int | bigframes.series.Series, ) -> bigframes.dataframe.DataFrame

Get bitwise XOR of DataFrame and other, element-wise, using operator ^.

See more: bigframes.dataframe.DataFrame.xor

bigframes.dataframe.DataFrame.abs

abs() -> bigframes.dataframe.DataFrame

Return a Series/DataFrame with absolute numeric value of each element.

See more: bigframes.dataframe.DataFrame.abs

bigframes.dataframe.DataFrame.add

add( other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame, axis: str | int = "columns", ) -> bigframes.dataframe.DataFrame

Get addition of DataFrame and other, element-wise (binary operator +).

See more: bigframes.dataframe.DataFrame.add

bigframes.dataframe.DataFrame.add_prefix

add_prefix( prefix: str, axis: int | str | None = None ) -> bigframes.dataframe.DataFrame

Prefix labels with string prefix.

See more: bigframes.dataframe.DataFrame.add_prefix

bigframes.dataframe.DataFrame.add_suffix

add_suffix( suffix: str, axis: int | str | None = None ) -> bigframes.dataframe.DataFrame

Suffix labels with string suffix.

See more: bigframes.dataframe.DataFrame.add_suffix

bigframes.dataframe.DataFrame.agg

agg(func) -> bigframes.dataframe.DataFrame | bigframes.series.Series

Aggregate using one or more operations over columns.

See more: bigframes.dataframe.DataFrame.agg

bigframes.dataframe.DataFrame.aggregate

aggregate(func) -> bigframes.dataframe.DataFrame | bigframes.series.Series

Aggregate using one or more operations over columns.

See more: bigframes.dataframe.DataFrame.aggregate

bigframes.dataframe.DataFrame.align

align( other: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], join: str = "outer", axis: typing.Optional[typing.Union[str, int]] = None, ) -> typing.Tuple[ typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], ]

Align two objects on their axes with the specified join method.

See more: bigframes.dataframe.DataFrame.align

bigframes.dataframe.DataFrame.all

all( axis: typing.Union[str, int] = 0, *, bool_only: bool = False ) -> bigframes.series.Series

Return whether all elements are True, potentially over an axis.

See more: bigframes.dataframe.DataFrame.all

bigframes.dataframe.DataFrame.any

any( *, axis: typing.Union[str, int] = 0, bool_only: bool = False ) -> bigframes.series.Series

Return whether any element is True, potentially over an axis.

See more: bigframes.dataframe.DataFrame.any

bigframes.dataframe.DataFrame.apply

apply(func, *, axis=0, args: typing.Tuple = (), **kwargs)

Apply a function along an axis of the DataFrame.

See more: bigframes.dataframe.DataFrame.apply

bigframes.dataframe.DataFrame.applymap

applymap( func, na_action: typing.Optional[str] = None ) -> bigframes.dataframe.DataFrame

Apply a function to a Dataframe elementwise.

See more: bigframes.dataframe.DataFrame.applymap

bigframes.dataframe.DataFrame.area

area( x: typing.Optional[typing.Hashable] = None, y: typing.Optional[typing.Hashable] = None, stacked: bool = True, **kwargs )

Draw a stacked area plot.

See more: bigframes.dataframe.DataFrame.area

bigframes.dataframe.DataFrame.assign

assign(**kwargs) -> bigframes.dataframe.DataFrame

Assign new columns to a DataFrame.

See more: bigframes.dataframe.DataFrame.assign

bigframes.dataframe.DataFrame.astype

astype( dtype: typing.Union[ typing.Literal[ "boolean", "Float64", "Int64", "int64[pyarrow]", "string", "string[pyarrow]", "timestamp[us, tz=UTC][pyarrow]", "timestamp[us][pyarrow]", "date32[day][pyarrow]", "time64[us][pyarrow]", "decimal128(38, 9)[pyarrow]", "decimal256(76, 38)[pyarrow]", "binary[pyarrow]", "duration[us][pyarrow]", ], pandas.core.arrays.boolean.BooleanDtype, pandas.core.arrays.floating.Float64Dtype, pandas.core.arrays.integer.Int64Dtype, pandas.core.arrays.string_.StringDtype, pandas.core.dtypes.dtypes.ArrowDtype, geopandas.array.GeometryDtype, type, dict[ str, typing.Union[ typing.Literal[ "boolean", "Float64", "Int64", "int64[pyarrow]", "string", "string[pyarrow]", "timestamp[us, tz=UTC][pyarrow]", "timestamp[us][pyarrow]", "date32[day][pyarrow]", "time64[us][pyarrow]", "decimal128(38, 9)[pyarrow]", "decimal256(76, 38)[pyarrow]", "binary[pyarrow]", "duration[us][pyarrow]", ], pandas.core.arrays.boolean.BooleanDtype, pandas.core.arrays.floating.Float64Dtype, pandas.core.arrays.integer.Int64Dtype, pandas.core.arrays.string_.StringDtype, pandas.core.dtypes.dtypes.ArrowDtype, geopandas.array.GeometryDtype, ], ], ], *, errors: typing.Literal["raise", "null"] = "raise" ) -> bigframes.dataframe.DataFrame

Cast a pandas object to a specified dtype dtype.

See more: bigframes.dataframe.DataFrame.astype

bigframes.dataframe.DataFrame.bar

bar( x: typing.Optional[typing.Hashable] = None, y: typing.Optional[typing.Hashable] = None, **kwargs )

Draw a vertical bar plot.

See more: bigframes.dataframe.DataFrame.bar

bigframes.dataframe.DataFrame.bfill

bfill(*, limit: typing.Optional[int] = None) -> bigframes.dataframe.DataFrame

Fill NA/NaN values by using the next valid observation to fill the gap.

See more: bigframes.dataframe.DataFrame.bfill

bigframes.dataframe.DataFrame.cache

cache()

Materializes the DataFrame to a temporary table.

See more: bigframes.dataframe.DataFrame.cache

bigframes.dataframe.DataFrame.combine

combine( other: bigframes.dataframe.DataFrame, func: typing.Callable[ [bigframes.series.Series, bigframes.series.Series], bigframes.series.Series ], fill_value=None, overwrite: bool = True, *, how: str = "outer" ) -> bigframes.dataframe.DataFrame

Perform column-wise combine with another DataFrame.

See more: bigframes.dataframe.DataFrame.combine

bigframes.dataframe.DataFrame.combine_first

combine_first(other: bigframes.dataframe.DataFrame)

Update null elements with value in the same location in other.

See more: bigframes.dataframe.DataFrame.combine_first

bigframes.dataframe.DataFrame.copy

copy() -> bigframes.dataframe.DataFrame

Make a copy of this object's indices and data.

See more: bigframes.dataframe.DataFrame.copy

bigframes.dataframe.DataFrame.corr

corr( method="pearson", min_periods=None, numeric_only=False ) -> bigframes.dataframe.DataFrame

Compute pairwise correlation of columns, excluding NA/null values.

See more: bigframes.dataframe.DataFrame.corr

bigframes.dataframe.DataFrame.corrwith

corrwith( other: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], *, numeric_only: bool = False )

Compute pairwise correlation.

See more: bigframes.dataframe.DataFrame.corrwith

bigframes.dataframe.DataFrame.count

count(*, numeric_only: bool = False) -> bigframes.series.Series

Count non-NA cells for each column.

See more: bigframes.dataframe.DataFrame.count

bigframes.dataframe.DataFrame.cov

cov(*, numeric_only: bool = False) -> bigframes.dataframe.DataFrame

Compute pairwise covariance of columns, excluding NA/null values.

See more: bigframes.dataframe.DataFrame.cov

bigframes.dataframe.DataFrame.cummax

cummax() -> bigframes.dataframe.DataFrame

Return cumulative maximum over columns.

See more: bigframes.dataframe.DataFrame.cummax

bigframes.dataframe.DataFrame.cummin

cummin() -> bigframes.dataframe.DataFrame

Return cumulative minimum over columns.

See more: bigframes.dataframe.DataFrame.cummin

bigframes.dataframe.DataFrame.cumprod

cumprod() -> bigframes.dataframe.DataFrame

Return cumulative product over columns.

See more: bigframes.dataframe.DataFrame.cumprod

bigframes.dataframe.DataFrame.cumsum

cumsum()

Return cumulative sum over columns.

See more: bigframes.dataframe.DataFrame.cumsum

bigframes.dataframe.DataFrame.describe

describe( include: typing.Union[None, typing.Literal["all"]] = None, ) -> bigframes.dataframe.DataFrame

Generate descriptive statistics.

See more: bigframes.dataframe.DataFrame.describe

bigframes.dataframe.DataFrame.diff

diff(periods: int = 1) -> bigframes.dataframe.DataFrame

First discrete difference of element.

See more: bigframes.dataframe.DataFrame.diff

bigframes.dataframe.DataFrame.div

div( other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame, axis: str | int = "columns", ) -> bigframes.dataframe.DataFrame

Get floating division of DataFrame and other, element-wise (binary operator /).

See more: bigframes.dataframe.DataFrame.div

bigframes.dataframe.DataFrame.divide

divide( other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame, axis: str | int = "columns", ) -> bigframes.dataframe.DataFrame

Get floating division of DataFrame and other, element-wise (binary operator /).

See more: bigframes.dataframe.DataFrame.divide

bigframes.dataframe.DataFrame.dot

dot(other: _DataFrameOrSeries) -> _DataFrameOrSeries

Compute the matrix multiplication between the DataFrame and other.

See more: bigframes.dataframe.DataFrame.dot

bigframes.dataframe.DataFrame.drop

Drop specified labels from columns.

See more: bigframes.dataframe.DataFrame.drop

bigframes.dataframe.DataFrame.drop_duplicates

drop_duplicates( subset: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] = None, *, keep: str = "first" ) -> bigframes.dataframe.DataFrame

Return DataFrame with duplicate rows removed.

See more: bigframes.dataframe.DataFrame.drop_duplicates

bigframes.dataframe.DataFrame.droplevel

droplevel( level: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]], axis: int | str = 0, )

Return DataFrame with requested index / column level(s) removed.

See more: bigframes.dataframe.DataFrame.droplevel

bigframes.dataframe.DataFrame.dropna

dropna( *, axis: int | str = 0, how: str = "any", thresh: typing.Optional[int] = None, subset: typing.Union[ None, typing.Hashable, typing.Sequence[typing.Hashable] ] = None, inplace: bool = False, ignore_index=False ) -> bigframes.dataframe.DataFrame

Remove missing values.

See more: bigframes.dataframe.DataFrame.dropna

bigframes.dataframe.DataFrame.duplicated

duplicated(subset=None, keep: str = "first") -> bigframes.series.Series

Return boolean Series denoting duplicate rows.

See more: bigframes.dataframe.DataFrame.duplicated

bigframes.dataframe.DataFrame.eq

eq(other: typing.Any, axis: str | int = "columns") -> bigframes.dataframe.DataFrame

Get equal to of DataFrame and other, element-wise (binary operator eq).

See more: bigframes.dataframe.DataFrame.eq

bigframes.dataframe.DataFrame.equals

equals( other: typing.Union[bigframes.series.Series, bigframes.dataframe.DataFrame], ) -> bool

Test whether two objects contain the same elements.

See more: bigframes.dataframe.DataFrame.equals

bigframes.dataframe.DataFrame.eval

eval(expr: str) -> bigframes.dataframe.DataFrame

Evaluate a string describing operations on DataFrame columns.

See more: bigframes.dataframe.DataFrame.eval

bigframes.dataframe.DataFrame.expanding

expanding(min_periods: int = 1) -> bigframes.core.window.rolling.Window

Provide expanding window calculations.

See more: bigframes.dataframe.DataFrame.expanding

bigframes.dataframe.DataFrame.explode

explode( column: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]], *, ignore_index: typing.Optional[bool] = False ) -> bigframes.dataframe.DataFrame

Transform each element of an array to a row, replicating index values.

See more: bigframes.dataframe.DataFrame.explode

bigframes.dataframe.DataFrame.ffill

ffill(*, limit: typing.Optional[int] = None) -> bigframes.dataframe.DataFrame

Fill NA/NaN values by propagating the last valid observation to next valid.

See more: bigframes.dataframe.DataFrame.ffill

bigframes.dataframe.DataFrame.fillna

fillna(value=None) -> bigframes.dataframe.DataFrame

Fill NA (NULL in BigQuery) values using the specified method.

See more: bigframes.dataframe.DataFrame.fillna

bigframes.dataframe.DataFrame.filter

filter( items: typing.Optional[typing.Iterable] = None, like: typing.Optional[str] = None, regex: typing.Optional[str] = None, axis: int | str | None = None, ) -> bigframes.dataframe.DataFrame

Subset the dataframe rows or columns according to the specified index labels.

See more: bigframes.dataframe.DataFrame.filter

bigframes.dataframe.DataFrame.first_valid_index

first_valid_index()

API documentation for first_valid_index method.

See more: bigframes.dataframe.DataFrame.first_valid_index

bigframes.dataframe.DataFrame.floordiv

floordiv( other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame, axis: str | int = "columns", ) -> bigframes.dataframe.DataFrame

Get integer division of DataFrame and other, element-wise (binary operator //).

See more: bigframes.dataframe.DataFrame.floordiv

bigframes.dataframe.DataFrame.from_dict

from_dict( data: dict, orient: str = "columns", dtype=None, columns=None ) -> bigframes.dataframe.DataFrame

Construct DataFrame from dict of array-like or dicts.

See more: bigframes.dataframe.DataFrame.from_dict

bigframes.dataframe.DataFrame.from_records

from_records( data, index=None, exclude=None, columns=None, coerce_float: bool = False, nrows: typing.Optional[int] = None, ) -> bigframes.dataframe.DataFrame

Convert structured or record ndarray to DataFrame.

See more: bigframes.dataframe.DataFrame.from_records

bigframes.dataframe.DataFrame.ge

ge(other: typing.Any, axis: str | int = "columns") -> bigframes.dataframe.DataFrame

Get 'greater than or equal to' of DataFrame and other, element-wise (binary operator >=).

See more: bigframes.dataframe.DataFrame.ge

bigframes.dataframe.DataFrame.get

get(key, default=None)

Get item from object for given key (ex: DataFrame column).

See more: bigframes.dataframe.DataFrame.get

bigframes.dataframe.DataFrame.groupby

groupby( by: typing.Optional[ typing.Union[ typing.Hashable, bigframes.series.Series, typing.Sequence[typing.Union[typing.Hashable, bigframes.series.Series]], ] ] = None, *, level: typing.Optional[ typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] ] = None, as_index: bool = True, dropna: bool = True ) -> bigframes.core.groupby.dataframe_group_by.DataFrameGroupBy

Group DataFrame by columns.

See more: bigframes.dataframe.DataFrame.groupby

bigframes.dataframe.DataFrame.gt

gt(other: typing.Any, axis: str | int = "columns") -> bigframes.dataframe.DataFrame

Get 'greater than' of DataFrame and other, element-wise (binary operator >).

See more: bigframes.dataframe.DataFrame.gt

bigframes.dataframe.DataFrame.head

head(n: int = 5) -> bigframes.dataframe.DataFrame

Return the first n rows.

See more: bigframes.dataframe.DataFrame.head

bigframes.dataframe.DataFrame.hist

hist(by: typing.Optional[typing.Sequence[str]] = None, bins: int = 10, **kwargs)

Draw one histogram of the DataFrame’s columns.

See more: bigframes.dataframe.DataFrame.hist

bigframes.dataframe.DataFrame.idxmax

idxmax() -> bigframes.series.Series

Return index of first occurrence of maximum over columns.

See more: bigframes.dataframe.DataFrame.idxmax

bigframes.dataframe.DataFrame.idxmin

idxmin() -> bigframes.series.Series

Return index of first occurrence of minimum over columns.

See more: bigframes.dataframe.DataFrame.idxmin

bigframes.dataframe.DataFrame.info

info( verbose: typing.Optional[bool] = None, buf=None, max_cols: typing.Optional[int] = None, memory_usage: typing.Optional[bool] = None, show_counts: typing.Optional[bool] = None, )

Print a concise summary of a DataFrame.

See more: bigframes.dataframe.DataFrame.info

bigframes.dataframe.DataFrame.insert

insert( loc: int, column: blocks.Label, value: SingleItemValue, allow_duplicates: bool = False, )

Insert column into DataFrame at specified location.

See more: bigframes.dataframe.DataFrame.insert

bigframes.dataframe.DataFrame.interpolate

interpolate(method: str = "linear") -> bigframes.dataframe.DataFrame

Fill NA (NULL in BigQuery) values using an interpolation method.

See more: bigframes.dataframe.DataFrame.interpolate

bigframes.dataframe.DataFrame.isin

isin(values) -> bigframes.dataframe.DataFrame

Whether each element in the DataFrame is contained in values.

See more: bigframes.dataframe.DataFrame.isin

bigframes.dataframe.DataFrame.isna

isna() -> bigframes.dataframe.DataFrame

Detect missing (NULL) values.

See more: bigframes.dataframe.DataFrame.isna

bigframes.dataframe.DataFrame.isnull

isnull() -> bigframes.dataframe.DataFrame

Detect missing (NULL) values.

See more: bigframes.dataframe.DataFrame.isnull

bigframes.dataframe.DataFrame.items

items()

Iterate over (column name, Series) pairs.

See more: bigframes.dataframe.DataFrame.items

bigframes.dataframe.DataFrame.iterrows

iterrows() -> typing.Iterable[tuple[typing.Any, pandas.core.series.Series]]

Iterate over DataFrame rows as (index, Series) pairs.

See more: bigframes.dataframe.DataFrame.iterrows

bigframes.dataframe.DataFrame.itertuples

itertuples( index: bool = True, name: typing.Optional[str] = "Pandas" ) -> typing.Iterable[tuple[typing.Any, ...]]

Iterate over DataFrame rows as namedtuples.

See more: bigframes.dataframe.DataFrame.itertuples

bigframes.dataframe.DataFrame.join

join( other: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], on: typing.Optional[str] = None, how: str = "left", lsuffix: str = "", rsuffix: str = "", ) -> bigframes.dataframe.DataFrame

Join columns of another DataFrame.

See more: bigframes.dataframe.DataFrame.join

bigframes.dataframe.DataFrame.keys

keys() -> pandas.core.indexes.base.Index

Get the 'info axis'.

See more: bigframes.dataframe.DataFrame.keys

bigframes.dataframe.DataFrame.kurt

kurt(*, numeric_only: bool = False)

Return unbiased kurtosis over columns.

See more: bigframes.dataframe.DataFrame.kurt

bigframes.dataframe.DataFrame.kurtosis

kurtosis(*, numeric_only: bool = False)

Return unbiased kurtosis over columns.

See more: bigframes.dataframe.DataFrame.kurtosis

bigframes.dataframe.DataFrame.le

le(other: typing.Any, axis: str | int = "columns") -> bigframes.dataframe.DataFrame

Get 'less than or equal to' of dataframe and other, element-wise (binary operator <=).

See more: bigframes.dataframe.DataFrame.le

bigframes.dataframe.DataFrame.line

line( x: typing.Optional[typing.Hashable] = None, y: typing.Optional[typing.Hashable] = None, **kwargs )

Plot Series or DataFrame as lines.

See more: bigframes.dataframe.DataFrame.line

bigframes.dataframe.DataFrame.lt

lt(other: typing.Any, axis: str | int = "columns") -> bigframes.dataframe.DataFrame

Get 'less than' of DataFrame and other, element-wise (binary operator <).

See more: bigframes.dataframe.DataFrame.lt

bigframes.dataframe.DataFrame.map

map(func, na_action: typing.Optional[str] = None) -> bigframes.dataframe.DataFrame

Apply a function to a Dataframe elementwise.

See more: bigframes.dataframe.DataFrame.map

bigframes.dataframe.DataFrame.mask

mask(cond, other=None)

Replace values where the condition is False.

See more: bigframes.dataframe.DataFrame.mask

bigframes.dataframe.DataFrame.max

max( axis: typing.Union[str, int] = 0, *, numeric_only: bool = False ) -> bigframes.series.Series

Return the maximum of the values over the requested axis.

See more: bigframes.dataframe.DataFrame.max

bigframes.dataframe.DataFrame.mean

mean( axis: typing.Union[str, int] = 0, *, numeric_only: bool = False ) -> bigframes.series.Series

Return the mean of the values over the requested axis.

See more: bigframes.dataframe.DataFrame.mean

bigframes.dataframe.DataFrame.median

median( *, numeric_only: bool = False, exact: bool = True ) -> bigframes.series.Series

Return the median of the values over colunms.

See more: bigframes.dataframe.DataFrame.median

bigframes.dataframe.DataFrame.melt

melt( id_vars: typing.Optional[typing.Iterable[typing.Hashable]] = None, value_vars: typing.Optional[typing.Iterable[typing.Hashable]] = None, var_name: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] = None, value_name: typing.Hashable = "value", )

Unpivot a DataFrame from wide to long format, optionally leaving identifiers set.

See more: bigframes.dataframe.DataFrame.melt

bigframes.dataframe.DataFrame.memory_usage

memory_usage(index: bool = True)

Return the memory usage of each column in bytes.

See more: bigframes.dataframe.DataFrame.memory_usage

bigframes.dataframe.DataFrame.merge

merge( right: bigframes.dataframe.DataFrame, how: typing.Literal["inner", "left", "outer", "right", "cross"] = "inner", on: typing.Optional[ typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] ] = None, *, left_on: typing.Optional[ typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] ] = None, right_on: typing.Optional[ typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] ] = None, left_index: bool = False, right_index: bool = False, sort: bool = False, suffixes: tuple[str, str] = ("_x", "_y") ) -> bigframes.dataframe.DataFrame

Merge DataFrame objects with a database-style join.

See more: bigframes.dataframe.DataFrame.merge

bigframes.dataframe.DataFrame.min

min( axis: typing.Union[str, int] = 0, *, numeric_only: bool = False ) -> bigframes.series.Series

Return the minimum of the values over the requested axis.

See more: bigframes.dataframe.DataFrame.min

bigframes.dataframe.DataFrame.mod

mod( other: int | bigframes.series.Series | bigframes.dataframe.DataFrame, axis: str | int = "columns", ) -> bigframes.dataframe.DataFrame

Get modulo of DataFrame and other, element-wise (binary operator %).

See more: bigframes.dataframe.DataFrame.mod

bigframes.dataframe.DataFrame.mul

mul( other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame, axis: str | int = "columns", ) -> bigframes.dataframe.DataFrame

Get multiplication of DataFrame and other, element-wise (binary operator *).

See more: bigframes.dataframe.DataFrame.mul

bigframes.dataframe.DataFrame.multiply

multiply( other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame, axis: str | int = "columns", ) -> bigframes.dataframe.DataFrame

Get multiplication of DataFrame and other, element-wise (binary operator *).

See more: bigframes.dataframe.DataFrame.multiply

bigframes.dataframe.DataFrame.ne

ne(other: typing.Any, axis: str | int = "columns") -> bigframes.dataframe.DataFrame

Get not equal to of DataFrame and other, element-wise (binary operator ne).

See more: bigframes.dataframe.DataFrame.ne

bigframes.dataframe.DataFrame.nlargest

nlargest( n: int, columns: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]], keep: str = "first", ) -> bigframes.dataframe.DataFrame

Return the first n rows ordered by columns in descending order.

See more: bigframes.dataframe.DataFrame.nlargest

bigframes.dataframe.DataFrame.notna

notna() -> bigframes.dataframe.DataFrame

Detect existing (non-missing) values.

See more: bigframes.dataframe.DataFrame.notna

bigframes.dataframe.DataFrame.notnull

notnull() -> bigframes.dataframe.DataFrame

Detect existing (non-missing) values.

See more: bigframes.dataframe.DataFrame.notnull

bigframes.dataframe.DataFrame.nsmallest

nsmallest( n: int, columns: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]], keep: str = "first", ) -> bigframes.dataframe.DataFrame

Return the first n rows ordered by columns in ascending order.

See more: bigframes.dataframe.DataFrame.nsmallest

bigframes.dataframe.DataFrame.nunique

nunique() -> bigframes.series.Series

Count number of distinct elements in each column.

See more: bigframes.dataframe.DataFrame.nunique

bigframes.dataframe.DataFrame.pct_change

pct_change(periods: int = 1) -> bigframes.dataframe.DataFrame

Fractional change between the current and a prior element.

See more: bigframes.dataframe.DataFrame.pct_change

bigframes.dataframe.DataFrame.peek

peek( n: int = 5, *, force: bool = True, allow_large_results=None ) -> pandas.core.frame.DataFrame

Preview n arbitrary rows from the dataframe.

See more: bigframes.dataframe.DataFrame.peek

bigframes.dataframe.DataFrame.pipe

pipe(func: Callable[..., T] | tuple[Callable[..., T], str], *args, **kwargs) -> T

Apply chainable functions that expect Series or DataFrames.

See more: bigframes.dataframe.DataFrame.pipe

bigframes.dataframe.DataFrame.pivot

pivot( *, columns: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]], index: typing.Optional[ typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] ] = None, values: typing.Optional[ typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] ] = None ) -> bigframes.dataframe.DataFrame

Return reshaped DataFrame organized by given index / column values.

See more: bigframes.dataframe.DataFrame.pivot

bigframes.dataframe.DataFrame.pivot_table

pivot_table( values: typing.Optional[ typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] ] = None, index: typing.Optional[ typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] ] = None, columns: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] = None, aggfunc: str = "mean", ) -> bigframes.dataframe.DataFrame

Create a spreadsheet-style pivot table as a DataFrame.

See more: bigframes.dataframe.DataFrame.pivot_table

bigframes.dataframe.DataFrame.pow

pow( other: int | bigframes.series.Series, axis: str | int = "columns" ) -> bigframes.dataframe.DataFrame

Get Exponential power of dataframe and other, element-wise (binary operator **).

See more: bigframes.dataframe.DataFrame.pow

bigframes.dataframe.DataFrame.prod

prod( axis: typing.Union[str, int] = 0, *, numeric_only: bool = False ) -> bigframes.series.Series

Return the product of the values over the requested axis.

See more: bigframes.dataframe.DataFrame.prod

bigframes.dataframe.DataFrame.product

product( axis: typing.Union[str, int] = 0, *, numeric_only: bool = False ) -> bigframes.series.Series

Return the product of the values over the requested axis.

See more: bigframes.dataframe.DataFrame.product

bigframes.dataframe.DataFrame.quantile

quantile( q: typing.Union[float, typing.Sequence[float]] = 0.5, *, numeric_only: bool = False )

Return values at the given quantile over requested axis.

See more: bigframes.dataframe.DataFrame.quantile

bigframes.dataframe.DataFrame.query

query(expr: str) -> bigframes.dataframe.DataFrame

Query the columns of a DataFrame with a boolean expression.

See more: bigframes.dataframe.DataFrame.query

bigframes.dataframe.DataFrame.radd

radd( other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame, axis: str | int = "columns", ) -> bigframes.dataframe.DataFrame

Get addition of DataFrame and other, element-wise (binary operator +).

See more: bigframes.dataframe.DataFrame.radd

bigframes.dataframe.DataFrame.rank

rank( axis=0, method: str = "average", numeric_only=False, na_option: str = "keep", ascending=True, pct: bool = False, ) -> bigframes.dataframe.DataFrame

Compute numerical data ranks (1 through n) along axis.

See more: bigframes.dataframe.DataFrame.rank

bigframes.dataframe.DataFrame.rdiv

rdiv( other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame, axis: str | int = "columns", ) -> bigframes.dataframe.DataFrame

Get floating division of DataFrame and other, element-wise (binary operator /).

See more: bigframes.dataframe.DataFrame.rdiv

bigframes.dataframe.DataFrame.reindex

reindex( labels=None, *, index=None, columns=None, axis: typing.Optional[typing.Union[str, int]] = None, validate: typing.Optional[bool] = None )

Conform DataFrame to new index with optional filling logic.

See more: bigframes.dataframe.DataFrame.reindex

bigframes.dataframe.DataFrame.reindex_like

reindex_like( other: bigframes.dataframe.DataFrame, *, validate: typing.Optional[bool] = None )

Return an object with matching indices as other object.

See more: bigframes.dataframe.DataFrame.reindex_like

bigframes.dataframe.DataFrame.rename

Rename columns.

See more: bigframes.dataframe.DataFrame.rename

bigframes.dataframe.DataFrame.rename_axis

Set the name of the axis for the index.

See more: bigframes.dataframe.DataFrame.rename_axis

bigframes.dataframe.DataFrame.reorder_levels

reorder_levels( order: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]], axis: int | str = 0, )

Rearrange index levels using input order.

See more: bigframes.dataframe.DataFrame.reorder_levels

bigframes.dataframe.DataFrame.replace

replace(to_replace: typing.Any, value: typing.Any = None, *, regex: bool = False)

Replace values given in to_replace with value.

See more: bigframes.dataframe.DataFrame.replace

bigframes.dataframe.DataFrame.resample

resample( rule: str, *, closed: typing.Optional[typing.Literal["right", "left"]] = None, label: typing.Optional[typing.Literal["right", "left"]] = None, on: typing.Hashable = None, level: typing.Optional[ typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] ] = None, origin: typing.Union[ pandas._libs.tslibs.timestamps.Timestamp, datetime.datetime, numpy.datetime64, int, float, str, typing.Literal["epoch", "start", "start_day", "end", "end_day"], ] = "start_day" ) -> bigframes.core.groupby.dataframe_group_by.DataFrameGroupBy

Resample time-series data.

See more: bigframes.dataframe.DataFrame.resample

bigframes.dataframe.DataFrame.reset_index

Reset the index.

See more: bigframes.dataframe.DataFrame.reset_index

bigframes.dataframe.DataFrame.rfloordiv

rfloordiv( other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame, axis: str | int = "columns", ) -> bigframes.dataframe.DataFrame

Get integer division of DataFrame and other, element-wise (binary operator //).

See more: bigframes.dataframe.DataFrame.rfloordiv

bigframes.dataframe.DataFrame.rmod

rmod( other: int | bigframes.series.Series | bigframes.dataframe.DataFrame, axis: str | int = "columns", ) -> bigframes.dataframe.DataFrame

Get modulo of DataFrame and other, element-wise (binary operator %).

See more: bigframes.dataframe.DataFrame.rmod

bigframes.dataframe.DataFrame.rmul

rmul( other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame, axis: str | int = "columns", ) -> bigframes.dataframe.DataFrame

Get multiplication of DataFrame and other, element-wise (binary operator *).

See more: bigframes.dataframe.DataFrame.rmul

bigframes.dataframe.DataFrame.rolling

rolling( window: ( int | pandas._libs.tslibs.timedeltas.Timedelta | numpy.timedelta64 | datetime.timedelta | str ), min_periods=None, on: str | None = None, closed: typing.Literal["right", "left", "both", "neither"] = "right", ) -> bigframes.core.window.rolling.Window

Provide rolling window calculations.

See more: bigframes.dataframe.DataFrame.rolling

bigframes.dataframe.DataFrame.round

round( decimals: typing.Union[int, dict[typing.Hashable, int]] = 0, ) -> bigframes.dataframe.DataFrame

Round a DataFrame to a variable number of decimal places.

See more: bigframes.dataframe.DataFrame.round

bigframes.dataframe.DataFrame.rpow

rpow( other: int | bigframes.series.Series, axis: str | int = "columns" ) -> bigframes.dataframe.DataFrame

Get Exponential power of dataframe and other, element-wise (binary operator rpow).

See more: bigframes.dataframe.DataFrame.rpow

bigframes.dataframe.DataFrame.rsub

rsub( other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame, axis: str | int = "columns", ) -> bigframes.dataframe.DataFrame

Get subtraction of DataFrame and other, element-wise (binary operator -).

See more: bigframes.dataframe.DataFrame.rsub

bigframes.dataframe.DataFrame.rtruediv

rtruediv( other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame, axis: str | int = "columns", ) -> bigframes.dataframe.DataFrame

Get floating division of DataFrame and other, element-wise (binary operator /).

See more: bigframes.dataframe.DataFrame.rtruediv

bigframes.dataframe.DataFrame.sample

sample( n: typing.Optional[int] = None, frac: typing.Optional[float] = None, *, random_state: typing.Optional[int] = None, sort: typing.Optional[typing.Union[bool, typing.Literal["random"]]] = "random" ) -> bigframes.dataframe.DataFrame

Return a random sample of items from an axis of object.

See more: bigframes.dataframe.DataFrame.sample

bigframes.dataframe.DataFrame.scatter

scatter( x: typing.Optional[typing.Hashable] = None, y: typing.Optional[typing.Hashable] = None, s: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] = None, c: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] = None, **kwargs )

Create a scatter plot with varying marker point size and color.

See more: bigframes.dataframe.DataFrame.scatter

bigframes.dataframe.DataFrame.select_dtypes

select_dtypes(include=None, exclude=None) -> bigframes.dataframe.DataFrame

Return a subset of the DataFrame's columns based on the column dtypes.

See more: bigframes.dataframe.DataFrame.select_dtypes

bigframes.dataframe.DataFrame.set_index

set_index( keys: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]], append: bool = False, drop: bool = True, ) -> bigframes.dataframe.DataFrame

Set the DataFrame index using existing columns.

See more: bigframes.dataframe.DataFrame.set_index

bigframes.dataframe.DataFrame.shift

shift(periods: int = 1) -> bigframes.dataframe.DataFrame

Shift index by desired number of periods.

See more: bigframes.dataframe.DataFrame.shift

bigframes.dataframe.DataFrame.skew

skew(*, numeric_only: bool = False)

Return unbiased skew over columns.

See more: bigframes.dataframe.DataFrame.skew

bigframes.dataframe.DataFrame.sort_index

Sort object by labels (along an axis).

See more: bigframes.dataframe.DataFrame.sort_index

bigframes.dataframe.DataFrame.sort_values

Sort by the values along row axis.

See more: bigframes.dataframe.DataFrame.sort_values

bigframes.dataframe.DataFrame.stack

stack(level: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] = -1)

Stack the prescribed level(s) from columns to index.

See more: bigframes.dataframe.DataFrame.stack

bigframes.dataframe.DataFrame.std

std( axis: typing.Union[str, int] = 0, *, numeric_only: bool = False ) -> bigframes.series.Series

Return sample standard deviation over columns.

See more: bigframes.dataframe.DataFrame.std

bigframes.dataframe.DataFrame.sub

sub( other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame, axis: str | int = "columns", ) -> bigframes.dataframe.DataFrame

Get subtraction of DataFrame and other, element-wise (binary operator -).

See more: bigframes.dataframe.DataFrame.sub

bigframes.dataframe.DataFrame.subtract

subtract( other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame, axis: str | int = "columns", ) -> bigframes.dataframe.DataFrame

Get subtraction of DataFrame and other, element-wise (binary operator -).

See more: bigframes.dataframe.DataFrame.subtract

bigframes.dataframe.DataFrame.sum

sum( axis: typing.Union[str, int] = 0, *, numeric_only: bool = False ) -> bigframes.series.Series

Return the sum of the values over the requested axis.

See more: bigframes.dataframe.DataFrame.sum

bigframes.dataframe.DataFrame.swaplevel

swaplevel(i: int = -2, j: int = -1, axis: int | str = 0)

Swap levels i and j in a MultiIndex.

See more: bigframes.dataframe.DataFrame.swaplevel

bigframes.dataframe.DataFrame.tail

tail(n: int = 5) -> bigframes.dataframe.DataFrame

Return the last n rows.

See more: bigframes.dataframe.DataFrame.tail

bigframes.dataframe.DataFrame.take

take( indices: typing.Sequence[int], axis: int | str | None = 0, **kwargs ) -> bigframes.dataframe.DataFrame

Return the elements in the given positional indices along an axis.

See more: bigframes.dataframe.DataFrame.take

bigframes.dataframe.DataFrame.to_arrow

to_arrow( *, ordered: bool = True, allow_large_results: typing.Optional[bool] = None ) -> pyarrow.lib.Table

Write DataFrame to an Arrow table / record batch.

See more: bigframes.dataframe.DataFrame.to_arrow

bigframes.dataframe.DataFrame.to_csv

to_csv( path_or_buf=None, sep=",", *, header: bool = True, index: bool = True, allow_large_results: typing.Optional[bool] = None ) -> typing.Optional[str]

Write object to a comma-separated values (csv) file on Cloud Storage.

See more: bigframes.dataframe.DataFrame.to_csv

bigframes.dataframe.DataFrame.to_dict

to_dict( orient: typing.Literal[ "dict", "list", "series", "split", "tight", "records", "index" ] = "dict", into: type[dict] = dict, *, allow_large_results: typing.Optional[bool] = None, **kwargs ) -> dict | list[dict]

Convert the DataFrame to a dictionary.

See more: bigframes.dataframe.DataFrame.to_dict

bigframes.dataframe.DataFrame.to_excel

to_excel( excel_writer, sheet_name: str = "Sheet1", *, allow_large_results: typing.Optional[bool] = None, **kwargs ) -> None

Write DataFrame to an Excel sheet.

See more: bigframes.dataframe.DataFrame.to_excel

bigframes.dataframe.DataFrame.to_gbq

to_gbq( destination_table: typing.Optional[str] = None, *, if_exists: typing.Optional[typing.Literal["fail", "replace", "append"]] = None, index: bool = True, ordering_id: typing.Optional[str] = None, clustering_columns: typing.Union[ pandas.core.indexes.base.Index, typing.Iterable[typing.Hashable] ] = (), labels: dict[str, str] = {} ) -> str

Write a DataFrame to a BigQuery table.

See more: bigframes.dataframe.DataFrame.to_gbq

bigframes.dataframe.DataFrame.to_html

to_html( buf=None, columns: typing.Optional[typing.Sequence[str]] = None, col_space=None, header: bool = True, index: bool = True, na_rep: str = "NaN", formatters=None, float_format=None, sparsify: bool | None = None, index_names: bool = True, justify: str | None = None, max_rows: int | None = None, max_cols: int | None = None, show_dimensions: bool = False, decimal: str = ".", bold_rows: bool = True, classes: str | list | tuple | None = None, escape: bool = True, notebook: bool = False, border: int | None = None, table_id: str | None = None, render_links: bool = False, encoding: str | None = None, *, allow_large_results: bool | None = None ) -> str

Render a DataFrame as an HTML table.

See more: bigframes.dataframe.DataFrame.to_html

bigframes.dataframe.DataFrame.to_json

to_json( path_or_buf=None, orient: typing.Optional[ typing.Literal["split", "records", "index", "columns", "values", "table"] ] = None, *, lines: bool = False, index: bool = True, allow_large_results: typing.Optional[bool] = None ) -> typing.Optional[str]

Convert the object to a JSON string, written to Cloud Storage.

See more: bigframes.dataframe.DataFrame.to_json

bigframes.dataframe.DataFrame.to_latex

to_latex( buf=None, columns: typing.Optional[typing.Sequence] = None, header: typing.Union[bool, typing.Sequence[str]] = True, index: bool = True, *, allow_large_results: typing.Optional[bool] = None, **kwargs ) -> str | None

Render object to a LaTeX tabular, longtable, or nested table.

See more: bigframes.dataframe.DataFrame.to_latex

bigframes.dataframe.DataFrame.to_markdown

to_markdown( buf=None, mode: str = "wt", index: bool = True, *, allow_large_results: typing.Optional[bool] = None, **kwargs ) -> str | None

Print DataFrame in Markdown-friendly format.

See more: bigframes.dataframe.DataFrame.to_markdown

bigframes.dataframe.DataFrame.to_numpy

to_numpy( dtype=None, copy=False, na_value=_NoDefault.no_default, *, allow_large_results=None, **kwargs ) -> numpy.ndarray

Convert the DataFrame to a NumPy array.

See more: bigframes.dataframe.DataFrame.to_numpy

bigframes.dataframe.DataFrame.to_orc

to_orc(path=None, *, allow_large_results=None, **kwargs) -> bytes | None

Write a DataFrame to the ORC format.

See more: bigframes.dataframe.DataFrame.to_orc

bigframes.dataframe.DataFrame.to_pandas

Write DataFrame to pandas DataFrame.

See more: bigframes.dataframe.DataFrame.to_pandas

bigframes.dataframe.DataFrame.to_pandas_batches

to_pandas_batches( page_size: typing.Optional[int] = None, max_results: typing.Optional[int] = None, *, allow_large_results: typing.Optional[bool] = None ) -> typing.Iterable[pandas.core.frame.DataFrame]

Stream DataFrame results to an iterable of pandas DataFrame.

See more: bigframes.dataframe.DataFrame.to_pandas_batches

bigframes.dataframe.DataFrame.to_parquet

to_parquet( path=None, *, compression: typing.Optional[typing.Literal["snappy", "gzip"]] = "snappy", index: bool = True, allow_large_results: typing.Optional[bool] = None ) -> typing.Optional[bytes]

Write a DataFrame to the binary Parquet format.

See more: bigframes.dataframe.DataFrame.to_parquet

bigframes.dataframe.DataFrame.to_pickle

to_pickle(path, *, allow_large_results=None, **kwargs) -> None

Pickle (serialize) object to file.

See more: bigframes.dataframe.DataFrame.to_pickle

bigframes.dataframe.DataFrame.to_records

to_records( index: bool = True, column_dtypes=None, index_dtypes=None, *, allow_large_results=None ) -> numpy.rec.recarray

Convert DataFrame to a NumPy record array.

See more: bigframes.dataframe.DataFrame.to_records

bigframes.dataframe.DataFrame.to_string

to_string( buf=None, columns: typing.Optional[typing.Sequence[str]] = None, col_space=None, header: typing.Union[bool, typing.Sequence[str]] = True, index: bool = True, na_rep: str = "NaN", formatters=None, float_format=None, sparsify: bool | None = None, index_names: bool = True, justify: str | None = None, max_rows: int | None = None, max_cols: int | None = None, show_dimensions: bool = False, decimal: str = ".", line_width: int | None = None, min_rows: int | None = None, max_colwidth: int | None = None, encoding: str | None = None, *, allow_large_results: typing.Optional[bool] = None ) -> str | None

Render a DataFrame to a console-friendly tabular output.

See more: bigframes.dataframe.DataFrame.to_string

bigframes.dataframe.DataFrame.transpose

transpose() -> bigframes.dataframe.DataFrame

Transpose index and columns.

See more: bigframes.dataframe.DataFrame.transpose

bigframes.dataframe.DataFrame.truediv

truediv( other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame, axis: str | int = "columns", ) -> bigframes.dataframe.DataFrame

Get floating division of DataFrame and other, element-wise (binary operator /).

See more: bigframes.dataframe.DataFrame.truediv

bigframes.dataframe.DataFrame.unstack

unstack( level: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] = -1, )

Pivot a level of the (necessarily hierarchical) index labels.

See more: bigframes.dataframe.DataFrame.unstack

bigframes.dataframe.DataFrame.update

update(other, join: str = "left", overwrite=True, filter_func=None)

Modify in place using non-NA values from another DataFrame.

See more: bigframes.dataframe.DataFrame.update

bigframes.dataframe.DataFrame.value_counts

value_counts( subset: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] = None, normalize: bool = False, sort: bool = True, ascending: bool = False, dropna: bool = True, )

Return a Series containing counts of unique rows in the DataFrame.

See more: bigframes.dataframe.DataFrame.value_counts

bigframes.dataframe.DataFrame.var

var( axis: typing.Union[str, int] = 0, *, numeric_only: bool = False ) -> bigframes.series.Series

Return unbiased variance over requested axis.

See more: bigframes.dataframe.DataFrame.var

bigframes.dataframe.DataFrame.where

where(cond, other=None)

Replace values where the condition is False.

See more: bigframes.dataframe.DataFrame.where

bigframes.geopandas.GeoSeries.__abs__

__abs__() -> bigframes.series.Series

Return a Series/DataFrame with absolute numeric value of each element.

See more: bigframes.geopandas.GeoSeries.abs

bigframes.geopandas.GeoSeries.__add__

__add__( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Get addition of Series and other, element-wise, using operator +.

See more: bigframes.geopandas.GeoSeries.add

bigframes.geopandas.GeoSeries.__and__

__and__(other: bool | int | bigframes.series.Series) -> bigframes.series.Series

Get bitwise AND of Series and other, element-wise, using operator &.

See more: bigframes.geopandas.GeoSeries.and

bigframes.geopandas.GeoSeries.__array__

__array__(dtype=None, copy: typing.Optional[bool] = None) -> numpy.ndarray

Returns the values as NumPy array.

See more: bigframes.geopandas.GeoSeries.array

bigframes.geopandas.GeoSeries.__array_ufunc__

__array_ufunc__( ufunc: numpy.ufunc, method: str, *inputs, **kwargs ) -> bigframes.series.Series

Used to support numpy ufuncs.

See more: bigframes.geopandas.GeoSeries.array_ufunc

bigframes.geopandas.GeoSeries.__bool__

__bool__()

Returns the truth value of the object.

See more: bigframes.geopandas.GeoSeries.bool

bigframes.geopandas.GeoSeries.__floordiv__

__floordiv__( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Get integer division of Series by other, using arithmetic operator //.

See more: bigframes.geopandas.GeoSeries.floordiv

bigframes.geopandas.GeoSeries.__getitem__

__getitem__(indexer)

Gets the specified index from the Series.

See more: bigframes.geopandas.GeoSeries.getitem

bigframes.geopandas.GeoSeries.__invert__

__invert__() -> bigframes.series.Series

Returns the logical inversion (binary NOT) of the Series, element-wise using operator ````.

See more: bigframes.geopandas.GeoSeries.invert

bigframes.geopandas.GeoSeries.__len__

__len__()

Returns number of values in the Series, serves len operator.

See more: bigframes.geopandas.GeoSeries.len

bigframes.geopandas.GeoSeries.__matmul__

__matmul__(other)

Matrix multiplication using binary @ operator.

See more: bigframes.geopandas.GeoSeries.matmul

bigframes.geopandas.GeoSeries.__mod__

__mod__(other) -> bigframes.series.Series

Get modulo of Series with other, element-wise, using operator %.

See more: bigframes.geopandas.GeoSeries.mod

bigframes.geopandas.GeoSeries.__mul__

__mul__(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Get multiplication of Series with other, element-wise, using operator *.

See more: bigframes.geopandas.GeoSeries.mul

bigframes.geopandas.GeoSeries.__nonzero__

__nonzero__()

Returns the truth value of the object.

See more: bigframes.geopandas.GeoSeries.nonzero

bigframes.geopandas.GeoSeries.__or__

__or__(other: bool | int | bigframes.series.Series) -> bigframes.series.Series

Get bitwise XOR of Series and other, element-wise, using operator ^.

See more: bigframes.geopandas.GeoSeries.or

bigframes.geopandas.GeoSeries.__pow__

__pow__(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Get exponentiation of Series with other, element-wise, using operator **.

See more: bigframes.geopandas.GeoSeries.pow

bigframes.geopandas.GeoSeries.__radd__

__radd__( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Get addition of Series and other, element-wise, using operator +.

See more: bigframes.geopandas.GeoSeries.radd

bigframes.geopandas.GeoSeries.__rand__

__rand__(other: bool | int | bigframes.series.Series) -> bigframes.series.Series

Get bitwise AND of Series and other, element-wise, using operator &.

See more: bigframes.geopandas.GeoSeries.rand

bigframes.geopandas.GeoSeries.__rfloordiv__

__rfloordiv__( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Get integer division of other by Series, using arithmetic operator //.

See more: bigframes.geopandas.GeoSeries.rfloordiv

bigframes.geopandas.GeoSeries.__rmatmul__

__rmatmul__(other)

Matrix multiplication using binary @ operator.

See more: bigframes.geopandas.GeoSeries.rmatmul

bigframes.geopandas.GeoSeries.__rmod__

__rmod__(other) -> bigframes.series.Series

Get modulo of other with Series, element-wise, using operator %.

See more: bigframes.geopandas.GeoSeries.rmod

bigframes.geopandas.GeoSeries.__rmul__

__rmul__(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Get multiplication of other with Series, element-wise, using operator *.

See more: bigframes.geopandas.GeoSeries.rmul

bigframes.geopandas.GeoSeries.__ror__

__ror__(other: bool | int | bigframes.series.Series) -> bigframes.series.Series

Get bitwise XOR of Series and other, element-wise, using operator ^.

See more: bigframes.geopandas.GeoSeries.ror

bigframes.geopandas.GeoSeries.__rpow__

__rpow__(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Get exponentiation of other with Series, element-wise, using operator **.

See more: bigframes.geopandas.GeoSeries.rpow

bigframes.geopandas.GeoSeries.__rsub__

__rsub__(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Get subtraction of Series from other, element-wise, using operator -.

See more: bigframes.geopandas.GeoSeries.rsub

bigframes.geopandas.GeoSeries.__rtruediv__

__rtruediv__( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Get division of other by Series, element-wise, using operator /.

See more: bigframes.geopandas.GeoSeries.rtruediv

bigframes.geopandas.GeoSeries.__setitem__

__setitem__(key, value) -> None

Set item using direct assignment, delegating to .loc indexer.

See more: bigframes.geopandas.GeoSeries.setitem

bigframes.geopandas.GeoSeries.__sub__

__sub__(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Get subtraction of other from Series, element-wise, using operator -.

See more: bigframes.geopandas.GeoSeries.sub

bigframes.geopandas.GeoSeries.__truediv__

__truediv__( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Get division of Series by other, element-wise, using operator /.

See more: bigframes.geopandas.GeoSeries.truediv

bigframes.geopandas.GeoSeries.abs

abs() -> bigframes.series.Series

Return a Series/DataFrame with absolute numeric value of each element.

See more: bigframes.geopandas.GeoSeries.abs

bigframes.geopandas.GeoSeries.add

add( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Return addition of Series and other, element-wise (binary operator add).

See more: bigframes.geopandas.GeoSeries.add

bigframes.geopandas.GeoSeries.add_prefix

add_prefix(prefix: str, axis: int | str | None = None) -> bigframes.series.Series

Prefix labels with string prefix.

See more: bigframes.geopandas.GeoSeries.add_prefix

bigframes.geopandas.GeoSeries.add_suffix

add_suffix(suffix: str, axis: int | str | None = None) -> bigframes.series.Series

Suffix labels with string suffix.

See more: bigframes.geopandas.GeoSeries.add_suffix

bigframes.geopandas.GeoSeries.agg

agg( func: typing.Union[str, typing.Sequence[str]], ) -> typing.Union[typing.Any, bigframes.series.Series]

Aggregate using one or more operations over the specified axis.

See more: bigframes.geopandas.GeoSeries.agg

bigframes.geopandas.GeoSeries.aggregate

aggregate( func: typing.Union[str, typing.Sequence[str]], ) -> typing.Union[typing.Any, bigframes.series.Series]

Aggregate using one or more operations over the specified axis.

See more: bigframes.geopandas.GeoSeries.aggregate

bigframes.geopandas.GeoSeries.all

all() -> bool

Return whether all elements are True, potentially over an axis.

See more: bigframes.geopandas.GeoSeries.all

bigframes.geopandas.GeoSeries.any

any() -> bool

Return whether any element is True, potentially over an axis.

See more: bigframes.geopandas.GeoSeries.any

bigframes.geopandas.GeoSeries.apply

apply( func, by_row: typing.Union[typing.Literal["compat"], bool] = "compat", *, args: typing.Tuple = () ) -> bigframes.series.Series

Invoke function on values of a Series.

See more: bigframes.geopandas.GeoSeries.apply

bigframes.geopandas.GeoSeries.argmax

argmax() -> int

Return int position of the largest value in the series.

See more: bigframes.geopandas.GeoSeries.argmax

bigframes.geopandas.GeoSeries.argmin

argmin() -> int

Return int position of the smallest value in the Series.

See more: bigframes.geopandas.GeoSeries.argmin

bigframes.geopandas.GeoSeries.astype

astype( dtype: typing.Union[ typing.Literal[ "boolean", "Float64", "Int64", "int64[pyarrow]", "string", "string[pyarrow]", "timestamp[us, tz=UTC][pyarrow]", "timestamp[us][pyarrow]", "date32[day][pyarrow]", "time64[us][pyarrow]", "decimal128(38, 9)[pyarrow]", "decimal256(76, 38)[pyarrow]", "binary[pyarrow]", "duration[us][pyarrow]", ], pandas.core.arrays.boolean.BooleanDtype, pandas.core.arrays.floating.Float64Dtype, pandas.core.arrays.integer.Int64Dtype, pandas.core.arrays.string_.StringDtype, pandas.core.dtypes.dtypes.ArrowDtype, geopandas.array.GeometryDtype, ], *, errors: typing.Literal["raise", "null"] = "raise" ) -> bigframes.series.Series

Cast a pandas object to a specified dtype dtype.

See more: bigframes.geopandas.GeoSeries.astype

bigframes.geopandas.GeoSeries.autocorr

autocorr(lag: int = 1) -> float

Compute the lag-N autocorrelation.

See more: bigframes.geopandas.GeoSeries.autocorr

bigframes.geopandas.GeoSeries.bar

bar( x: typing.Optional[typing.Hashable] = None, y: typing.Optional[typing.Hashable] = None, **kwargs )

Draw a vertical bar plot.

See more: bigframes.geopandas.GeoSeries.bar

bigframes.geopandas.GeoSeries.between

between(left, right, inclusive="both")

Return boolean Series equivalent to left <= series <= right.

See more: bigframes.geopandas.GeoSeries.between

bigframes.geopandas.GeoSeries.bfill

bfill(*, limit: typing.Optional[int] = None) -> bigframes.series.Series

Fill NA/NaN values by using the next valid observation to fill the gap.

See more: bigframes.geopandas.GeoSeries.bfill

bigframes.geopandas.GeoSeries.buffer

buffer(distance: float) -> bigframes.series.Series

API documentation for buffer method.

See more: bigframes.geopandas.GeoSeries.buffer

bigframes.geopandas.GeoSeries.cache

cache()

Materializes the Series to a temporary table.

See more: bigframes.geopandas.GeoSeries.cache

bigframes.geopandas.GeoSeries.case_when

case_when(caselist) -> bigframes.series.Series

Replace values where the conditions are True.

See more: bigframes.geopandas.GeoSeries.case_when

bigframes.geopandas.GeoSeries.clip

clip(lower=None, upper=None)

Trim values at input threshold(s).

See more: bigframes.geopandas.GeoSeries.clip

bigframes.geopandas.GeoSeries.combine

combine(other, func) -> bigframes.series.Series

Combine the Series with a Series or scalar according to func.

See more: bigframes.geopandas.GeoSeries.combine

bigframes.geopandas.GeoSeries.combine_first

combine_first(other: bigframes.series.Series) -> bigframes.series.Series

Update null elements with value in the same location in 'other'.

See more: bigframes.geopandas.GeoSeries.combine_first

bigframes.geopandas.GeoSeries.copy

copy() -> bigframes.series.Series

Make a copy of this object's indices and data.

See more: bigframes.geopandas.GeoSeries.copy

bigframes.geopandas.GeoSeries.corr

corr(other: bigframes.series.Series, method="pearson", min_periods=None) -> float

Compute the correlation with the other Series.

See more: bigframes.geopandas.GeoSeries.corr

bigframes.geopandas.GeoSeries.count

count() -> int

Return number of non-NA/null observations in the Series.

See more: bigframes.geopandas.GeoSeries.count

bigframes.geopandas.GeoSeries.cov

cov(other: bigframes.series.Series) -> float

Compute covariance with Series, excluding missing values.

See more: bigframes.geopandas.GeoSeries.cov

bigframes.geopandas.GeoSeries.cummax

cummax() -> bigframes.series.Series

Return cumulative maximum over a DataFrame or Series axis.

See more: bigframes.geopandas.GeoSeries.cummax

bigframes.geopandas.GeoSeries.cummin

cummin() -> bigframes.series.Series

Return cumulative minimum over a DataFrame or Series axis.

See more: bigframes.geopandas.GeoSeries.cummin

bigframes.geopandas.GeoSeries.cumprod

cumprod() -> bigframes.series.Series

Return cumulative product over a DataFrame or Series axis.

See more: bigframes.geopandas.GeoSeries.cumprod

bigframes.geopandas.GeoSeries.cumsum

cumsum() -> bigframes.series.Series

Return cumulative sum over a DataFrame or Series axis.

See more: bigframes.geopandas.GeoSeries.cumsum

bigframes.geopandas.GeoSeries.describe

describe() -> bigframes.series.Series

Generate descriptive statistics.

See more: bigframes.geopandas.GeoSeries.describe

bigframes.geopandas.GeoSeries.diff

diff(periods: int = 1) -> bigframes.series.Series

First discrete difference of element.

See more: bigframes.geopandas.GeoSeries.diff

bigframes.geopandas.GeoSeries.difference

difference( other: bigframes.geopandas.geoseries.GeoSeries, ) -> bigframes.series.Series

Returns a GeoSeries of the points in each aligned geometry that are not in other.

See more: bigframes.geopandas.GeoSeries.difference

bigframes.geopandas.GeoSeries.distance

distance(other: bigframes.geopandas.geoseries.GeoSeries) -> bigframes.series.Series

[Not Implemented] Use <xref uid="bigframes.bigquery.st_distance">bigframes.bigquery.st_distance</xref>(series, other) instead to return the shorted distance between two GEOGRAPHY objects in meters.

See more: bigframes.geopandas.GeoSeries.distance

bigframes.geopandas.GeoSeries.div

div( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Return floating division of Series and other, element-wise (binary operator truediv).

See more: bigframes.geopandas.GeoSeries.div

bigframes.geopandas.GeoSeries.divide

divide( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Return floating division of Series and other, element-wise (binary operator truediv).

See more: bigframes.geopandas.GeoSeries.divide

bigframes.geopandas.GeoSeries.divmod

divmod(other) -> typing.Tuple[bigframes.series.Series, bigframes.series.Series]

Return integer division and modulo of Series and other, element-wise (binary operator divmod).

See more: bigframes.geopandas.GeoSeries.divmod

bigframes.geopandas.GeoSeries.dot

dot(other)

Compute the dot product between the Series and the columns of other.

See more: bigframes.geopandas.GeoSeries.dot

bigframes.geopandas.GeoSeries.drop

drop( labels: typing.Any = None, *, axis: typing.Union[int, str] = 0, index: typing.Any = None, columns: typing.Union[typing.Hashable, typing.Iterable[typing.Hashable]] = None, level: typing.Optional[typing.Union[str, int]] = None ) -> bigframes.series.Series

Return Series with specified index labels removed.

See more: bigframes.geopandas.GeoSeries.drop

bigframes.geopandas.GeoSeries.drop_duplicates

drop_duplicates(*, keep: str = "first") -> bigframes.series.Series

Return Series with duplicate values removed.

See more: bigframes.geopandas.GeoSeries.drop_duplicates

bigframes.geopandas.GeoSeries.droplevel

droplevel( level: typing.Union[str, int, typing.Sequence[typing.Union[str, int]]], axis: int | str = 0, )

Return Series with requested index / column level(s) removed.

See more: bigframes.geopandas.GeoSeries.droplevel

bigframes.geopandas.GeoSeries.dropna

dropna( *, axis: int = 0, inplace: bool = False, how: typing.Optional[str] = None, ignore_index: bool = False ) -> bigframes.series.Series

Return a new Series with missing values removed.

See more: bigframes.geopandas.GeoSeries.dropna

bigframes.geopandas.GeoSeries.duplicated

duplicated(keep: str = "first") -> bigframes.series.Series

Indicate duplicate Series values.

See more: bigframes.geopandas.GeoSeries.duplicated

bigframes.geopandas.GeoSeries.eq

eq(other: object) -> bigframes.series.Series

Return equal of Series and other, element-wise (binary operator eq).

See more: bigframes.geopandas.GeoSeries.eq

bigframes.geopandas.GeoSeries.equals

equals( other: typing.Union[bigframes.series.Series, bigframes.dataframe.DataFrame], ) -> bool

Test whether two objects contain the same elements.

See more: bigframes.geopandas.GeoSeries.equals

bigframes.geopandas.GeoSeries.expanding

expanding(min_periods: int = 1) -> bigframes.core.window.rolling.Window

Provide expanding window calculations.

See more: bigframes.geopandas.GeoSeries.expanding

bigframes.geopandas.GeoSeries.explode

explode(*, ignore_index: typing.Optional[bool] = False) -> bigframes.series.Series

Transform each element of a list-like to a row.

See more: bigframes.geopandas.GeoSeries.explode

bigframes.geopandas.GeoSeries.ffill

ffill(*, limit: typing.Optional[int] = None) -> bigframes.series.Series

Fill NA/NaN values by propagating the last valid observation to next valid.

See more: bigframes.geopandas.GeoSeries.ffill

bigframes.geopandas.GeoSeries.fillna

fillna(value=None) -> bigframes.series.Series

Fill NA (NULL in BigQuery) values using the specified method.

See more: bigframes.geopandas.GeoSeries.fillna

bigframes.geopandas.GeoSeries.filter

filter( items: typing.Optional[typing.Iterable] = None, like: typing.Optional[str] = None, regex: typing.Optional[str] = None, axis: typing.Optional[typing.Union[str, int]] = None, ) -> bigframes.series.Series

Subset the dataframe rows or columns according to the specified index labels.

See more: bigframes.geopandas.GeoSeries.filter

bigframes.geopandas.GeoSeries.floordiv

floordiv( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Return integer division of Series and other, element-wise (binary operator floordiv).

See more: bigframes.geopandas.GeoSeries.floordiv

bigframes.geopandas.GeoSeries.from_wkt

from_wkt( data, index=None, *, session: typing.Optional[bigframes.session.Session] = None ) -> bigframes.geopandas.geoseries.GeoSeries

Alternate constructor to create a GeoSeries from a list or array of WKT objects.

See more: bigframes.geopandas.GeoSeries.from_wkt

bigframes.geopandas.GeoSeries.from_xy

from_xy( x, y, index=None, session=None, **kwargs ) -> bigframes.geopandas.geoseries.GeoSeries

Alternate constructor to create a GeoSeries of Point geometries from lists or arrays of x, y coordinates.

See more: bigframes.geopandas.GeoSeries.from_xy

bigframes.geopandas.GeoSeries.ge

ge(other) -> bigframes.series.Series

Get 'greater than or equal to' of Series and other, element-wise (binary operator ge).

See more: bigframes.geopandas.GeoSeries.ge

bigframes.geopandas.GeoSeries.get

get(key, default=None)

Get item from object for given key (ex: DataFrame column).

See more: bigframes.geopandas.GeoSeries.get

bigframes.geopandas.GeoSeries.groupby

groupby( by: typing.Union[ typing.Hashable, bigframes.series.Series, typing.Sequence[typing.Union[typing.Hashable, bigframes.series.Series]], ] = None, axis=0, level: typing.Optional[ typing.Union[int, str, typing.Sequence[int], typing.Sequence[str]] ] = None, as_index: bool = True, *, dropna: bool = True ) -> bigframes.core.groupby.series_group_by.SeriesGroupBy

Group Series using a mapper or by a Series of columns.

See more: bigframes.geopandas.GeoSeries.groupby

bigframes.geopandas.GeoSeries.gt

gt(other) -> bigframes.series.Series

Return Greater than of series and other, element-wise (binary operator gt).

See more: bigframes.geopandas.GeoSeries.gt

bigframes.geopandas.GeoSeries.head

head(n: int = 5) -> bigframes.series.Series

Return the first n rows.

See more: bigframes.geopandas.GeoSeries.head

bigframes.geopandas.GeoSeries.hist

hist(by: typing.Optional[typing.Sequence[str]] = None, bins: int = 10, **kwargs)

Draw one histogram of the DataFrame’s columns.

See more: bigframes.geopandas.GeoSeries.hist

bigframes.geopandas.GeoSeries.idxmax

idxmax() -> typing.Hashable

Return the row label of the maximum value.

See more: bigframes.geopandas.GeoSeries.idxmax

bigframes.geopandas.GeoSeries.idxmin

idxmin() -> typing.Hashable

Return the row label of the minimum value.

See more: bigframes.geopandas.GeoSeries.idxmin

bigframes.geopandas.GeoSeries.interpolate

interpolate(method: str = "linear") -> bigframes.series.Series

Fill NaN values using an interpolation method.

See more: bigframes.geopandas.GeoSeries.interpolate

bigframes.geopandas.GeoSeries.intersection

intersection( other: bigframes.geopandas.geoseries.GeoSeries, ) -> bigframes.series.Series

Returns a GeoSeries of the intersection of points in each aligned geometry with other.

See more: bigframes.geopandas.GeoSeries.intersection

bigframes.geopandas.GeoSeries.isin

isin(values) -> bigframes.series.Series

Whether elements in Series are contained in values.

See more: bigframes.geopandas.GeoSeries.isin

bigframes.geopandas.GeoSeries.isna

isna() -> bigframes.series.Series

Detect missing (NULL) values.

See more: bigframes.geopandas.GeoSeries.isna

bigframes.geopandas.GeoSeries.isnull

isnull() -> bigframes.series.Series

Detect missing (NULL) values.

See more: bigframes.geopandas.GeoSeries.isnull

bigframes.geopandas.GeoSeries.item

item()

Return the first element of the underlying data as a Python scalar.

See more: bigframes.geopandas.GeoSeries.item

bigframes.geopandas.GeoSeries.items

items()

Lazily iterate over (index, value) tuples.

See more: bigframes.geopandas.GeoSeries.items

bigframes.geopandas.GeoSeries.keys

keys() -> bigframes.core.indexes.base.Index

Return alias for index.

See more: bigframes.geopandas.GeoSeries.keys

bigframes.geopandas.GeoSeries.kurt

kurt()

Return unbiased kurtosis over requested axis.

See more: bigframes.geopandas.GeoSeries.kurt

bigframes.geopandas.GeoSeries.kurtosis

kurtosis()

Return unbiased kurtosis over requested axis.

See more: bigframes.geopandas.GeoSeries.kurtosis

bigframes.geopandas.GeoSeries.le

le(other) -> bigframes.series.Series

Get 'less than or equal to' of Series and other, element-wise (binary operator le).

See more: bigframes.geopandas.GeoSeries.le

bigframes.geopandas.GeoSeries.line

line( x: typing.Optional[typing.Hashable] = None, y: typing.Optional[typing.Hashable] = None, **kwargs )

Plot Series or DataFrame as lines.

See more: bigframes.geopandas.GeoSeries.line

bigframes.geopandas.GeoSeries.lt

lt(other) -> bigframes.series.Series

Get 'less than' of Series and other, element-wise (binary operator lt).

See more: bigframes.geopandas.GeoSeries.lt

bigframes.geopandas.GeoSeries.map

map( arg: typing.Union[typing.Mapping, bigframes.series.Series, typing.Callable], na_action: typing.Optional[str] = None, *, verify_integrity: bool = False ) -> bigframes.series.Series

Map values of Series according to an input mapping or function.

See more: bigframes.geopandas.GeoSeries.map

bigframes.geopandas.GeoSeries.mask

mask(cond, other=None) -> bigframes.series.Series

Replace values where the condition is True.

See more: bigframes.geopandas.GeoSeries.mask

bigframes.geopandas.GeoSeries.max

max() -> typing.Any

Return the maximum of the values over the requested axis.

See more: bigframes.geopandas.GeoSeries.max

bigframes.geopandas.GeoSeries.mean

mean() -> float

Return the mean of the values over the requested axis.

See more: bigframes.geopandas.GeoSeries.mean

bigframes.geopandas.GeoSeries.median

median(*, exact: bool = True) -> float

Return the median of the values over the requested axis.

See more: bigframes.geopandas.GeoSeries.median

bigframes.geopandas.GeoSeries.min

min() -> typing.Any

Return the maximum of the values over the requested axis.

See more: bigframes.geopandas.GeoSeries.min

bigframes.geopandas.GeoSeries.mod

mod(other) -> bigframes.series.Series

Return modulo of Series and other, element-wise (binary operator mod).

See more: bigframes.geopandas.GeoSeries.mod

bigframes.geopandas.GeoSeries.mode

mode() -> bigframes.series.Series

Return the mode(s) of the Series.

See more: bigframes.geopandas.GeoSeries.mode

bigframes.geopandas.GeoSeries.mul

mul(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Return multiplication of Series and other, element-wise (binary operator mul).

See more: bigframes.geopandas.GeoSeries.mul

bigframes.geopandas.GeoSeries.multiply

multiply(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Return multiplication of Series and other, element-wise (binary operator mul).

See more: bigframes.geopandas.GeoSeries.multiply

bigframes.geopandas.GeoSeries.ne

ne(other: object) -> bigframes.series.Series

Return not equal of Series and other, element-wise (binary operator ne).

See more: bigframes.geopandas.GeoSeries.ne

bigframes.geopandas.GeoSeries.nlargest

nlargest(n: int = 5, keep: str = "first") -> bigframes.series.Series

Return the largest n elements.

See more: bigframes.geopandas.GeoSeries.nlargest

bigframes.geopandas.GeoSeries.notna

notna() -> bigframes.series.Series

Detect existing (non-missing) values.

See more: bigframes.geopandas.GeoSeries.notna

bigframes.geopandas.GeoSeries.notnull

notnull() -> bigframes.series.Series

Detect existing (non-missing) values.

See more: bigframes.geopandas.GeoSeries.notnull

bigframes.geopandas.GeoSeries.nsmallest

nsmallest(n: int = 5, keep: str = "first") -> bigframes.series.Series

Return the smallest n elements.

See more: bigframes.geopandas.GeoSeries.nsmallest

bigframes.geopandas.GeoSeries.nunique

nunique() -> int

Return number of unique elements in the object.

See more: bigframes.geopandas.GeoSeries.nunique

bigframes.geopandas.GeoSeries.pad

pad(*, limit: typing.Optional[int] = None) -> bigframes.series.Series

Fill NA/NaN values by propagating the last valid observation to next valid.

See more: bigframes.geopandas.GeoSeries.pad

bigframes.geopandas.GeoSeries.pct_change

pct_change(periods: int = 1) -> bigframes.series.Series

Fractional change between the current and a prior element.

See more: bigframes.geopandas.GeoSeries.pct_change

bigframes.geopandas.GeoSeries.peek

peek( n: int = 5, *, force: bool = True, allow_large_results=None ) -> pandas.core.series.Series

Preview n arbitrary elements from the series without guarantees about row selection or ordering.

See more: bigframes.geopandas.GeoSeries.peek

bigframes.geopandas.GeoSeries.pipe

pipe(func: Callable[..., T] | tuple[Callable[..., T], str], *args, **kwargs) -> T

Apply chainable functions that expect Series or DataFrames.

See more: bigframes.geopandas.GeoSeries.pipe

bigframes.geopandas.GeoSeries.pow

pow(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Return Exponential power of series and other, element-wise (binary operator pow).

See more: bigframes.geopandas.GeoSeries.pow

bigframes.geopandas.GeoSeries.prod

prod() -> float

Return the product of the values over the requested axis.

See more: bigframes.geopandas.GeoSeries.prod

bigframes.geopandas.GeoSeries.product

product() -> float

Return the product of the values over the requested axis.

See more: bigframes.geopandas.GeoSeries.product

bigframes.geopandas.GeoSeries.quantile

quantile( q: typing.Union[float, typing.Sequence[float]] = 0.5, ) -> typing.Union[bigframes.series.Series, float]

Return value at the given quantile.

See more: bigframes.geopandas.GeoSeries.quantile

bigframes.geopandas.GeoSeries.radd

radd( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Return addition of Series and other, element-wise (binary operator radd).

See more: bigframes.geopandas.GeoSeries.radd

bigframes.geopandas.GeoSeries.rank

rank( axis=0, method: str = "average", numeric_only=False, na_option: str = "keep", ascending: bool = True, pct: bool = False, ) -> bigframes.series.Series

Compute numerical data ranks (1 through n) along axis.

See more: bigframes.geopandas.GeoSeries.rank

bigframes.geopandas.GeoSeries.rdiv

rdiv( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Return floating division of Series and other, element-wise (binary operator rtruediv).

See more: bigframes.geopandas.GeoSeries.rdiv

bigframes.geopandas.GeoSeries.rdivmod

rdivmod(other) -> typing.Tuple[bigframes.series.Series, bigframes.series.Series]

Return integer division and modulo of Series and other, element-wise (binary operator rdivmod).

See more: bigframes.geopandas.GeoSeries.rdivmod

bigframes.geopandas.GeoSeries.reindex

reindex(index=None, *, validate: typing.Optional[bool] = None)

Conform Series to new index with optional filling logic.

See more: bigframes.geopandas.GeoSeries.reindex

bigframes.geopandas.GeoSeries.reindex_like

reindex_like( other: bigframes.series.Series, *, validate: typing.Optional[bool] = None )

Return an object with matching indices as other object.

See more: bigframes.geopandas.GeoSeries.reindex_like

bigframes.geopandas.GeoSeries.rename

rename( index: typing.Union[typing.Hashable, typing.Mapping[typing.Any, typing.Any]] = None, *, inplace: bool = False, **kwargs ) -> typing.Optional[bigframes.series.Series]

Alter Series index labels or name.

See more: bigframes.geopandas.GeoSeries.rename

bigframes.geopandas.GeoSeries.rename_axis

rename_axis( mapper: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]], *, inplace: bool = False, **kwargs ) -> typing.Optional[bigframes.series.Series]

Set the name of the axis for the index or columns.

See more: bigframes.geopandas.GeoSeries.rename_axis

bigframes.geopandas.GeoSeries.reorder_levels

reorder_levels( order: typing.Union[str, int, typing.Sequence[typing.Union[str, int]]], axis: int | str = 0, )

Rearrange index levels using input order.

See more: bigframes.geopandas.GeoSeries.reorder_levels

bigframes.geopandas.GeoSeries.replace

replace(to_replace: typing.Any, value: typing.Any = None, *, regex: bool = False)

Replace values given in to_replace with value.

See more: bigframes.geopandas.GeoSeries.replace

bigframes.geopandas.GeoSeries.resample

resample( rule: str, *, closed: typing.Optional[typing.Literal["right", "left"]] = None, label: typing.Optional[typing.Literal["right", "left"]] = None, level: typing.Optional[ typing.Union[str, int, typing.Sequence[typing.Union[str, int]]] ] = None, origin: typing.Union[ pandas._libs.tslibs.timestamps.Timestamp, datetime.datetime, numpy.datetime64, int, float, str, typing.Literal["epoch", "start", "start_day", "end", "end_day"], ] = "start_day" ) -> bigframes.core.groupby.series_group_by.SeriesGroupBy

Resample time-series data.

See more: bigframes.geopandas.GeoSeries.resample

bigframes.geopandas.GeoSeries.reset_index

reset_index( level: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] = None, *, name: typing.Optional[str] = None, drop: bool = False, inplace: bool = False, allow_duplicates: typing.Optional[bool] = None ) -> bigframes.dataframe.DataFrame | bigframes.series.Series | None

Generate a new DataFrame or Series with the index reset.

See more: bigframes.geopandas.GeoSeries.reset_index

bigframes.geopandas.GeoSeries.rfloordiv

rfloordiv( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Return integer division of Series and other, element-wise (binary operator rfloordiv).

See more: bigframes.geopandas.GeoSeries.rfloordiv

bigframes.geopandas.GeoSeries.rmod

rmod(other) -> bigframes.series.Series

Return modulo of Series and other, element-wise (binary operator mod).

See more: bigframes.geopandas.GeoSeries.rmod

bigframes.geopandas.GeoSeries.rmul

rmul(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Return multiplication of Series and other, element-wise (binary operator mul).

See more: bigframes.geopandas.GeoSeries.rmul

bigframes.geopandas.GeoSeries.rolling

rolling( window: ( int | pandas._libs.tslibs.timedeltas.Timedelta | numpy.timedelta64 | datetime.timedelta | str ), min_periods: int | None = None, closed: typing.Literal["right", "left", "both", "neither"] = "right", ) -> bigframes.core.window.rolling.Window

Provide rolling window calculations.

See more: bigframes.geopandas.GeoSeries.rolling

bigframes.geopandas.GeoSeries.round

round(decimals=0) -> bigframes.series.Series

Round each value in a Series to the given number of decimals.

See more: bigframes.geopandas.GeoSeries.round

bigframes.geopandas.GeoSeries.rpow

rpow(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Return Exponential power of series and other, element-wise (binary operator rpow).

See more: bigframes.geopandas.GeoSeries.rpow

bigframes.geopandas.GeoSeries.rsub

rsub(other) -> bigframes.series.Series

Return subtraction of Series and other, element-wise (binary operator rsub).

See more: bigframes.geopandas.GeoSeries.rsub

bigframes.geopandas.GeoSeries.rtruediv

rtruediv( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Return floating division of Series and other, element-wise (binary operator rtruediv).

See more: bigframes.geopandas.GeoSeries.rtruediv

bigframes.geopandas.GeoSeries.sample

sample( n: typing.Optional[int] = None, frac: typing.Optional[float] = None, *, random_state: typing.Optional[int] = None, sort: typing.Optional[typing.Union[bool, typing.Literal["random"]]] = "random" ) -> bigframes.series.Series

Return a random sample of items from an axis of object.

See more: bigframes.geopandas.GeoSeries.sample

bigframes.geopandas.GeoSeries.shift

shift(periods: int = 1) -> bigframes.series.Series

Shift index by desired number of periods.

See more: bigframes.geopandas.GeoSeries.shift

bigframes.geopandas.GeoSeries.simplify

simplify(tolerance, preserve_topology=True)

[Not Implemented] Use <xref uid="bigframes.bigquery.st_simplify">bigframes.bigquery.st_simplify</xref>(series, tolerance_meters), instead to set the tolerance in meters.

See more: bigframes.geopandas.GeoSeries.simplify

bigframes.geopandas.GeoSeries.skew

skew()

Return unbiased skew over requested axis.

See more: bigframes.geopandas.GeoSeries.skew

bigframes.geopandas.GeoSeries.sort_index

sort_index( *, axis=0, inplace: bool = False, ascending=True, na_position="last" ) -> typing.Optional[bigframes.series.Series]

Sort Series by index labels.

See more: bigframes.geopandas.GeoSeries.sort_index

bigframes.geopandas.GeoSeries.sort_values

sort_values( *, axis=0, inplace: bool = False, ascending=True, kind: str = "quicksort", na_position: typing.Literal["first", "last"] = "last" ) -> typing.Optional[bigframes.series.Series]

Sort by the values.

See more: bigframes.geopandas.GeoSeries.sort_values

bigframes.geopandas.GeoSeries.std

std() -> float

Return sample standard deviation over requested axis.

See more: bigframes.geopandas.GeoSeries.std

bigframes.geopandas.GeoSeries.sub

sub(other) -> bigframes.series.Series

Return subtraction of Series and other, element-wise (binary operator sub).

See more: bigframes.geopandas.GeoSeries.sub

bigframes.geopandas.GeoSeries.subtract

subtract(other) -> bigframes.series.Series

Return subtraction of Series and other, element-wise (binary operator sub).

See more: bigframes.geopandas.GeoSeries.subtract

bigframes.geopandas.GeoSeries.sum

sum() -> float

Return the sum of the values over the requested axis.

See more: bigframes.geopandas.GeoSeries.sum

bigframes.geopandas.GeoSeries.swaplevel

swaplevel(i: int = -2, j: int = -1)

Swap levels i and j in a MultiIndex.

See more: bigframes.geopandas.GeoSeries.swaplevel

bigframes.geopandas.GeoSeries.tail

tail(n: int = 5) -> bigframes.series.Series

Return the last n rows.

See more: bigframes.geopandas.GeoSeries.tail

bigframes.geopandas.GeoSeries.take

take( indices: typing.Sequence[int], axis: int | str | None = 0, **kwargs ) -> bigframes.series.Series

Return the elements in the given positional indices along an axis.

See more: bigframes.geopandas.GeoSeries.take

bigframes.geopandas.GeoSeries.to_csv

to_csv( path_or_buf=None, sep=",", *, header: bool = True, index: bool = True, allow_large_results: typing.Optional[bool] = None ) -> typing.Optional[str]

Write object to a comma-separated values (csv) file on Cloud Storage.

See more: bigframes.geopandas.GeoSeries.to_csv

bigframes.geopandas.GeoSeries.to_dict

to_dict( into: type[dict] = dict, *, allow_large_results: typing.Optional[bool] = None ) -> typing.Mapping

Convert Series to {label -> value} dict or dict-like object.

See more: bigframes.geopandas.GeoSeries.to_dict

bigframes.geopandas.GeoSeries.to_excel

to_excel( excel_writer, sheet_name="Sheet1", *, allow_large_results=None, **kwargs ) -> None

Write Series to an Excel sheet.

See more: bigframes.geopandas.GeoSeries.to_excel

bigframes.geopandas.GeoSeries.to_frame

to_frame(name: typing.Hashable = None) -> bigframes.dataframe.DataFrame

Convert Series to DataFrame.

See more: bigframes.geopandas.GeoSeries.to_frame

bigframes.geopandas.GeoSeries.to_json

to_json( path_or_buf=None, orient: typing.Optional[ typing.Literal["split", "records", "index", "columns", "values", "table"] ] = None, *, lines: bool = False, index: bool = True, allow_large_results: typing.Optional[bool] = None ) -> typing.Optional[str]

Convert the object to a JSON string, written to Cloud Storage.

See more: bigframes.geopandas.GeoSeries.to_json

bigframes.geopandas.GeoSeries.to_latex

to_latex( buf=None, columns=None, header=True, index=True, *, allow_large_results=None, **kwargs ) -> typing.Optional[str]

Render object to a LaTeX tabular, longtable, or nested table.

See more: bigframes.geopandas.GeoSeries.to_latex

bigframes.geopandas.GeoSeries.to_list

to_list(*, allow_large_results: typing.Optional[bool] = None) -> list

Return a list of the values.

See more: bigframes.geopandas.GeoSeries.to_list

bigframes.geopandas.GeoSeries.to_markdown

to_markdown( buf: typing.Optional[typing.IO[str]] = None, mode: str = "wt", index: bool = True, *, allow_large_results: typing.Optional[bool] = None, **kwargs ) -> typing.Optional[str]

Print Series in Markdown-friendly format.

See more: bigframes.geopandas.GeoSeries.to_markdown

bigframes.geopandas.GeoSeries.to_numpy

to_numpy( dtype=None, copy=False, na_value=_NoDefault.no_default, *, allow_large_results=None, **kwargs ) -> numpy.ndarray

A NumPy ndarray representing the values in this Series or Index.

See more: bigframes.geopandas.GeoSeries.to_numpy

bigframes.geopandas.GeoSeries.to_pandas

to_pandas( max_download_size: typing.Optional[int] = None, sampling_method: typing.Optional[str] = None, random_state: typing.Optional[int] = None, *, ordered: bool = True, dry_run: bool = False, allow_large_results: typing.Optional[bool] = None ) -> pandas.core.series.Series

Writes Series to pandas Series.

See more: bigframes.geopandas.GeoSeries.to_pandas

bigframes.geopandas.GeoSeries.to_pandas_batches

to_pandas_batches( page_size: typing.Optional[int] = None, max_results: typing.Optional[int] = None, *, allow_large_results: typing.Optional[bool] = None ) -> typing.Iterable[pandas.core.series.Series]

Stream Series results to an iterable of pandas Series.

See more: bigframes.geopandas.GeoSeries.to_pandas_batches

bigframes.geopandas.GeoSeries.to_pickle

to_pickle(path, *, allow_large_results=None, **kwargs) -> None

Pickle (serialize) object to file.

See more: bigframes.geopandas.GeoSeries.to_pickle

bigframes.geopandas.GeoSeries.to_string

to_string( buf=None, na_rep="NaN", float_format=None, header=True, index=True, length=False, dtype=False, name=False, max_rows=None, min_rows=None, *, allow_large_results=None ) -> typing.Optional[str]

Render a string representation of the Series.

See more: bigframes.geopandas.GeoSeries.to_string

bigframes.geopandas.GeoSeries.to_wkt

to_wkt() -> bigframes.series.Series

Convert GeoSeries geometries to WKT.

See more: bigframes.geopandas.GeoSeries.to_wkt

bigframes.geopandas.GeoSeries.to_xarray

to_xarray(*, allow_large_results: typing.Optional[bool] = None)

Return an xarray object from the pandas object.

See more: bigframes.geopandas.GeoSeries.to_xarray

bigframes.geopandas.GeoSeries.tolist

tolist(*, allow_large_results: typing.Optional[bool] = None) -> list

Return a list of the values.

See more: bigframes.geopandas.GeoSeries.tolist

bigframes.geopandas.GeoSeries.transpose

transpose() -> bigframes.series.Series

Return the transpose, which is by definition self.

See more: bigframes.geopandas.GeoSeries.transpose

bigframes.geopandas.GeoSeries.truediv

truediv( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Return floating division of Series and other, element-wise (binary operator truediv).

See more: bigframes.geopandas.GeoSeries.truediv

bigframes.geopandas.GeoSeries.unique

unique(keep_order=True) -> bigframes.series.Series

Return unique values of Series object.

See more: bigframes.geopandas.GeoSeries.unique

bigframes.geopandas.GeoSeries.unstack

unstack( level: typing.Union[str, int, typing.Sequence[typing.Union[str, int]]] = -1, )

Unstack, also known as pivot, Series with MultiIndex to produce DataFrame.

See more: bigframes.geopandas.GeoSeries.unstack

bigframes.geopandas.GeoSeries.update

update( other: typing.Union[bigframes.series.Series, typing.Sequence, typing.Mapping], ) -> None

Modify Series in place using values from passed Series.

See more: bigframes.geopandas.GeoSeries.update

bigframes.geopandas.GeoSeries.value_counts

value_counts( normalize: bool = False, sort: bool = True, ascending: bool = False, *, dropna: bool = True )

Return a Series containing counts of unique values.

See more: bigframes.geopandas.GeoSeries.value_counts

bigframes.geopandas.GeoSeries.var

var() -> float

Return unbiased variance over requested axis.

See more: bigframes.geopandas.GeoSeries.var

bigframes.geopandas.GeoSeries.where

where(cond, other=None)

Replace values where the condition is False.

See more: bigframes.geopandas.GeoSeries.where

bigframes.ml.cluster.KMeans.__repr__

__repr__()

Print the estimator's constructor with all non-default parameter values.

See more: bigframes.ml.cluster.KMeans.repr

bigframes.ml.cluster.KMeans.detect_anomalies

detect_anomalies( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], *, contamination: float = 0.1 ) -> bigframes.dataframe.DataFrame

Detect the anomaly data points of the input.

See more: bigframes.ml.cluster.KMeans.detect_anomalies

bigframes.ml.cluster.KMeans.fit

fit( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], y: typing.Optional[ typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ] ] = None, ) -> bigframes.ml.base._T

Compute k-means clustering.

See more: bigframes.ml.cluster.KMeans.fit

bigframes.ml.cluster.KMeans.get_params

get_params(deep: bool = True) -> typing.Dict[str, typing.Any]

Get parameters for this estimator.

See more: bigframes.ml.cluster.KMeans.get_params

bigframes.ml.cluster.KMeans.predict

predict( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], ) -> bigframes.dataframe.DataFrame

Predict the closest cluster each sample in X belongs to.

See more: bigframes.ml.cluster.KMeans.predict

bigframes.ml.cluster.KMeans.register

register(vertex_ai_model_id: typing.Optional[str] = None) -> bigframes.ml.base._T

Register the model to Vertex AI.

See more: bigframes.ml.cluster.KMeans.register

bigframes.ml.cluster.KMeans.score

score( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], y=None, ) -> bigframes.dataframe.DataFrame

Calculate evaluation metrics of the model.

See more: bigframes.ml.cluster.KMeans.score

bigframes.ml.cluster.KMeans.to_gbq

to_gbq(model_name: str, replace: bool = False) -> bigframes.ml.cluster.KMeans

Save the model to BigQuery.

See more: bigframes.ml.cluster.KMeans.to_gbq

bigframes.ml.compose.ColumnTransformer.__repr__

__repr__()

Print the estimator's constructor with all non-default parameter values.

See more: bigframes.ml.compose.ColumnTransformer.repr

bigframes.ml.compose.ColumnTransformer.fit

fit( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], y=None, ) -> bigframes.ml.compose.ColumnTransformer

Fit all transformers using X.

See more: bigframes.ml.compose.ColumnTransformer.fit

bigframes.ml.compose.ColumnTransformer.fit_transform

fit_transform( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], y: typing.Optional[ typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ] ] = None, ) -> bigframes.dataframe.DataFrame

API documentation for fit_transform method.

See more: bigframes.ml.compose.ColumnTransformer.fit_transform

bigframes.ml.compose.ColumnTransformer.get_params

get_params(deep: bool = True) -> typing.Dict[str, typing.Any]

Get parameters for this estimator.

See more: bigframes.ml.compose.ColumnTransformer.get_params

bigframes.ml.compose.ColumnTransformer.to_gbq

to_gbq(model_name: str, replace: bool = False) -> bigframes.ml.base._T

Save the transformer as a BigQuery model.

See more: bigframes.ml.compose.ColumnTransformer.to_gbq

bigframes.ml.compose.ColumnTransformer.transform

transform( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], ) -> bigframes.dataframe.DataFrame

Transform X separately by each transformer, concatenate results.

See more: bigframes.ml.compose.ColumnTransformer.transform

bigframes.ml.decomposition.MatrixFactorization.__repr__

__repr__()

Print the estimator's constructor with all non-default parameter values.

See more: bigframes.ml.decomposition.MatrixFactorization.repr

bigframes.ml.decomposition.MatrixFactorization.fit

fit( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], y: typing.Optional[ typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ] ] = None, ) -> bigframes.ml.base._T

Fit the model according to the given training data.

See more: bigframes.ml.decomposition.MatrixFactorization.fit

bigframes.ml.decomposition.MatrixFactorization.get_params

get_params(deep: bool = True) -> typing.Dict[str, typing.Any]

Get parameters for this estimator.

See more: bigframes.ml.decomposition.MatrixFactorization.get_params

bigframes.ml.decomposition.MatrixFactorization.predict

predict( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], ) -> bigframes.dataframe.DataFrame

Generate a predicted rating for every user-item row combination for a matrix factorization model.

See more: bigframes.ml.decomposition.MatrixFactorization.predict

bigframes.ml.decomposition.MatrixFactorization.register

register(vertex_ai_model_id: typing.Optional[str] = None) -> bigframes.ml.base._T

Register the model to Vertex AI.

See more: bigframes.ml.decomposition.MatrixFactorization.register

bigframes.ml.decomposition.MatrixFactorization.score

score(X=None, y=None) -> bigframes.dataframe.DataFrame

Calculate evaluation metrics of the model.

See more: bigframes.ml.decomposition.MatrixFactorization.score

bigframes.ml.decomposition.MatrixFactorization.to_gbq

to_gbq( model_name: str, replace: bool = False ) -> bigframes.ml.decomposition.MatrixFactorization

Save the model to BigQuery.

See more: bigframes.ml.decomposition.MatrixFactorization.to_gbq

bigframes.ml.decomposition.PCA.__repr__

__repr__()

Print the estimator's constructor with all non-default parameter values.

See more: bigframes.ml.decomposition.PCA.repr

bigframes.ml.decomposition.PCA.detect_anomalies

detect_anomalies( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], *, contamination: float = 0.1 ) -> bigframes.dataframe.DataFrame

Detect the anomaly data points of the input.

See more: bigframes.ml.decomposition.PCA.detect_anomalies

bigframes.ml.decomposition.PCA.fit

fit( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], y: typing.Optional[ typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ] ] = None, ) -> bigframes.ml.base._T

Fit the model according to the given training data.

See more: bigframes.ml.decomposition.PCA.fit

bigframes.ml.decomposition.PCA.get_params

get_params(deep: bool = True) -> typing.Dict[str, typing.Any]

Get parameters for this estimator.

See more: bigframes.ml.decomposition.PCA.get_params

bigframes.ml.decomposition.PCA.predict

predict( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], ) -> bigframes.dataframe.DataFrame

Predict the closest cluster for each sample in X.

See more: bigframes.ml.decomposition.PCA.predict

bigframes.ml.decomposition.PCA.register

register(vertex_ai_model_id: typing.Optional[str] = None) -> bigframes.ml.base._T

Register the model to Vertex AI.

See more: bigframes.ml.decomposition.PCA.register

bigframes.ml.decomposition.PCA.score

score(X=None, y=None) -> bigframes.dataframe.DataFrame

Calculate evaluation metrics of the model.

See more: bigframes.ml.decomposition.PCA.score

bigframes.ml.decomposition.PCA.to_gbq

to_gbq(model_name: str, replace: bool = False) -> bigframes.ml.decomposition.PCA

Save the model to BigQuery.

See more: bigframes.ml.decomposition.PCA.to_gbq

bigframes.ml.ensemble.RandomForestClassifier.__repr__

__repr__()

Print the estimator's constructor with all non-default parameter values.

See more: bigframes.ml.ensemble.RandomForestClassifier.repr

bigframes.ml.ensemble.RandomForestClassifier.fit

fit( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], y: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], X_eval: typing.Optional[ typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ] ] = None, y_eval: typing.Optional[ typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ] ] = None, ) -> bigframes.ml.base._T

Build a forest of trees from the training set (X, y).

See more: bigframes.ml.ensemble.RandomForestClassifier.fit

bigframes.ml.ensemble.RandomForestClassifier.get_params

get_params(deep: bool = True) -> typing.Dict[str, typing.Any]

Get parameters for this estimator.

See more: bigframes.ml.ensemble.RandomForestClassifier.get_params

bigframes.ml.ensemble.RandomForestClassifier.predict

predict( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], ) -> bigframes.dataframe.DataFrame

Predict regression target for X.

See more: bigframes.ml.ensemble.RandomForestClassifier.predict

bigframes.ml.ensemble.RandomForestClassifier.register

register(vertex_ai_model_id: typing.Optional[str] = None) -> bigframes.ml.base._T

Register the model to Vertex AI.

See more: bigframes.ml.ensemble.RandomForestClassifier.register

bigframes.ml.ensemble.RandomForestClassifier.score

score( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], y: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], )

Calculate evaluation metrics of the model.

See more: bigframes.ml.ensemble.RandomForestClassifier.score

bigframes.ml.ensemble.RandomForestClassifier.to_gbq

to_gbq( model_name: str, replace: bool = False ) -> bigframes.ml.ensemble.RandomForestClassifier

Save the model to BigQuery.

See more: bigframes.ml.ensemble.RandomForestClassifier.to_gbq

bigframes.ml.ensemble.RandomForestRegressor.__repr__

__repr__()

Print the estimator's constructor with all non-default parameter values.

See more: bigframes.ml.ensemble.RandomForestRegressor.repr

bigframes.ml.ensemble.RandomForestRegressor.fit

fit( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], y: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], X_eval: typing.Optional[ typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ] ] = None, y_eval: typing.Optional[ typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ] ] = None, ) -> bigframes.ml.base._T

Build a forest of trees from the training set (X, y).

See more: bigframes.ml.ensemble.RandomForestRegressor.fit

bigframes.ml.ensemble.RandomForestRegressor.get_params

get_params(deep: bool = True) -> typing.Dict[str, typing.Any]

Get parameters for this estimator.

See more: bigframes.ml.ensemble.RandomForestRegressor.get_params

bigframes.ml.ensemble.RandomForestRegressor.predict

predict( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], ) -> bigframes.dataframe.DataFrame

Predict regression target for X.

See more: bigframes.ml.ensemble.RandomForestRegressor.predict

bigframes.ml.ensemble.RandomForestRegressor.register

register(vertex_ai_model_id: typing.Optional[str] = None) -> bigframes.ml.base._T

Register the model to Vertex AI.

See more: bigframes.ml.ensemble.RandomForestRegressor.register

bigframes.ml.ensemble.RandomForestRegressor.score

score( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], y: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], )

Calculate evaluation metrics of the model.

See more: bigframes.ml.ensemble.RandomForestRegressor.score

bigframes.ml.ensemble.RandomForestRegressor.to_gbq

to_gbq( model_name: str, replace: bool = False ) -> bigframes.ml.ensemble.RandomForestRegressor

Save the model to BigQuery.

See more: bigframes.ml.ensemble.RandomForestRegressor.to_gbq

bigframes.ml.ensemble.XGBClassifier.__repr__

__repr__()

Print the estimator's constructor with all non-default parameter values.

See more: bigframes.ml.ensemble.XGBClassifier.repr

bigframes.ml.ensemble.XGBClassifier.fit

fit( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], y: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], X_eval: typing.Optional[ typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ] ] = None, y_eval: typing.Optional[ typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ] ] = None, ) -> bigframes.ml.base._T

Fit gradient boosting model.

See more: bigframes.ml.ensemble.XGBClassifier.fit

bigframes.ml.ensemble.XGBClassifier.get_params

get_params(deep: bool = True) -> typing.Dict[str, typing.Any]

Get parameters for this estimator.

See more: bigframes.ml.ensemble.XGBClassifier.get_params

bigframes.ml.ensemble.XGBClassifier.predict

predict( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], ) -> bigframes.dataframe.DataFrame

Predict using the XGB model.

See more: bigframes.ml.ensemble.XGBClassifier.predict

bigframes.ml.ensemble.XGBClassifier.register

register(vertex_ai_model_id: typing.Optional[str] = None) -> bigframes.ml.base._T

Register the model to Vertex AI.

See more: bigframes.ml.ensemble.XGBClassifier.register

bigframes.ml.ensemble.XGBClassifier.score

score( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], y: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], )

Return the mean accuracy on the given test data and labels.

See more: bigframes.ml.ensemble.XGBClassifier.score

bigframes.ml.ensemble.XGBClassifier.to_gbq

to_gbq( model_name: str, replace: bool = False ) -> bigframes.ml.ensemble.XGBClassifier

Save the model to BigQuery.

See more: bigframes.ml.ensemble.XGBClassifier.to_gbq

bigframes.ml.ensemble.XGBRegressor.__repr__

__repr__()

Print the estimator's constructor with all non-default parameter values.

See more: bigframes.ml.ensemble.XGBRegressor.repr

bigframes.ml.ensemble.XGBRegressor.fit

fit( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], y: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], X_eval: typing.Optional[ typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ] ] = None, y_eval: typing.Optional[ typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ] ] = None, ) -> bigframes.ml.base._T

Fit gradient boosting model.

See more: bigframes.ml.ensemble.XGBRegressor.fit

bigframes.ml.ensemble.XGBRegressor.get_params

get_params(deep: bool = True) -> typing.Dict[str, typing.Any]

Get parameters for this estimator.

See more: bigframes.ml.ensemble.XGBRegressor.get_params

bigframes.ml.ensemble.XGBRegressor.predict

predict( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], ) -> bigframes.dataframe.DataFrame

Predict using the XGB model.

See more: bigframes.ml.ensemble.XGBRegressor.predict

bigframes.ml.ensemble.XGBRegressor.register

register(vertex_ai_model_id: typing.Optional[str] = None) -> bigframes.ml.base._T

Register the model to Vertex AI.

See more: bigframes.ml.ensemble.XGBRegressor.register

bigframes.ml.ensemble.XGBRegressor.score

score( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], y: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], )

Calculate evaluation metrics of the model.

See more: bigframes.ml.ensemble.XGBRegressor.score

bigframes.ml.ensemble.XGBRegressor.to_gbq

to_gbq( model_name: str, replace: bool = False ) -> bigframes.ml.ensemble.XGBRegressor

Save the model to BigQuery.

See more: bigframes.ml.ensemble.XGBRegressor.to_gbq

bigframes.ml.forecasting.ARIMAPlus.__repr__

__repr__()

Print the estimator's constructor with all non-default parameter values.

See more: bigframes.ml.forecasting.ARIMAPlus.repr

bigframes.ml.forecasting.ARIMAPlus.detect_anomalies

detect_anomalies( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], *, anomaly_prob_threshold: float = 0.95 ) -> bigframes.dataframe.DataFrame

Detect the anomaly data points of the input.

See more: bigframes.ml.forecasting.ARIMAPlus.detect_anomalies

bigframes.ml.forecasting.ARIMAPlus.fit

fit( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], y: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], transforms=None, id_col: typing.Optional[ typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ] ] = None, )

API documentation for fit method.

See more: bigframes.ml.forecasting.ARIMAPlus.fit

bigframes.ml.forecasting.ARIMAPlus.get_params

get_params(deep: bool = True) -> typing.Dict[str, typing.Any]

Get parameters for this estimator.

See more: bigframes.ml.forecasting.ARIMAPlus.get_params

bigframes.ml.forecasting.ARIMAPlus.predict

predict( X=None, *, horizon: int = 3, confidence_level: float = 0.95 ) -> bigframes.dataframe.DataFrame

Forecast time series at future horizon.

See more: bigframes.ml.forecasting.ARIMAPlus.predict

bigframes.ml.forecasting.ARIMAPlus.predict_explain

predict_explain( X=None, *, horizon: int = 3, confidence_level: float = 0.95 ) -> bigframes.dataframe.DataFrame

Explain Forecast time series at future horizon.

See more: bigframes.ml.forecasting.ARIMAPlus.predict_explain

bigframes.ml.forecasting.ARIMAPlus.register

register(vertex_ai_model_id: typing.Optional[str] = None) -> bigframes.ml.base._T

Register the model to Vertex AI.

See more: bigframes.ml.forecasting.ARIMAPlus.register

bigframes.ml.forecasting.ARIMAPlus.score

score( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], y: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], id_col: typing.Optional[ typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ] ] = None, ) -> bigframes.dataframe.DataFrame

Calculate evaluation metrics of the model.

See more: bigframes.ml.forecasting.ARIMAPlus.score

bigframes.ml.forecasting.ARIMAPlus.summary

summary(show_all_candidate_models: bool = False) -> bigframes.dataframe.DataFrame

Summary of the evaluation metrics of the time series model.

See more: bigframes.ml.forecasting.ARIMAPlus.summary

bigframes.ml.forecasting.ARIMAPlus.to_gbq

to_gbq( model_name: str, replace: bool = False ) -> bigframes.ml.forecasting.ARIMAPlus

Save the model to BigQuery.

See more: bigframes.ml.forecasting.ARIMAPlus.to_gbq

bigframes.ml.imported.ONNXModel.__repr__

__repr__()

Print the estimator's constructor with all non-default parameter values.

See more: bigframes.ml.imported.ONNXModel.repr

bigframes.ml.imported.ONNXModel.get_params

get_params(deep: bool = True) -> typing.Dict[str, typing.Any]

Get parameters for this estimator.

See more: bigframes.ml.imported.ONNXModel.get_params

bigframes.ml.imported.ONNXModel.predict

predict( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], ) -> bigframes.dataframe.DataFrame

Predict the result from input DataFrame.

See more: bigframes.ml.imported.ONNXModel.predict

bigframes.ml.imported.ONNXModel.register

register(vertex_ai_model_id: typing.Optional[str] = None) -> bigframes.ml.base._T

Register the model to Vertex AI.

See more: bigframes.ml.imported.ONNXModel.register

bigframes.ml.imported.ONNXModel.to_gbq

to_gbq(model_name: str, replace: bool = False) -> bigframes.ml.imported.ONNXModel

Save the model to BigQuery.

See more: bigframes.ml.imported.ONNXModel.to_gbq

bigframes.ml.imported.TensorFlowModel.__repr__

__repr__()

Print the estimator's constructor with all non-default parameter values.

See more: bigframes.ml.imported.TensorFlowModel.repr

bigframes.ml.imported.TensorFlowModel.get_params

get_params(deep: bool = True) -> typing.Dict[str, typing.Any]

Get parameters for this estimator.

See more: bigframes.ml.imported.TensorFlowModel.get_params

bigframes.ml.imported.TensorFlowModel.predict

predict( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], ) -> bigframes.dataframe.DataFrame

Predict the result from input DataFrame.

See more: bigframes.ml.imported.TensorFlowModel.predict

bigframes.ml.imported.TensorFlowModel.register

register(vertex_ai_model_id: typing.Optional[str] = None) -> bigframes.ml.base._T

Register the model to Vertex AI.

See more: bigframes.ml.imported.TensorFlowModel.register

bigframes.ml.imported.TensorFlowModel.to_gbq

to_gbq( model_name: str, replace: bool = False ) -> bigframes.ml.imported.TensorFlowModel

Save the model to BigQuery.

See more: bigframes.ml.imported.TensorFlowModel.to_gbq

bigframes.ml.imported.XGBoostModel.__repr__

__repr__()

Print the estimator's constructor with all non-default parameter values.

See more: bigframes.ml.imported.XGBoostModel.repr

bigframes.ml.imported.XGBoostModel.get_params

get_params(deep: bool = True) -> typing.Dict[str, typing.Any]

Get parameters for this estimator.

See more: bigframes.ml.imported.XGBoostModel.get_params

bigframes.ml.imported.XGBoostModel.predict

predict( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], ) -> bigframes.dataframe.DataFrame

Predict the result from input DataFrame.

See more: bigframes.ml.imported.XGBoostModel.predict

bigframes.ml.imported.XGBoostModel.register

register(vertex_ai_model_id: typing.Optional[str] = None) -> bigframes.ml.base._T

Register the model to Vertex AI.

See more: bigframes.ml.imported.XGBoostModel.register

bigframes.ml.imported.XGBoostModel.to_gbq

to_gbq( model_name: str, replace: bool = False ) -> bigframes.ml.imported.XGBoostModel

Save the model to BigQuery.

See more: bigframes.ml.imported.XGBoostModel.to_gbq

bigframes.ml.impute.SimpleImputer.__repr__

__repr__()

Print the estimator's constructor with all non-default parameter values.

See more: bigframes.ml.impute.SimpleImputer.repr

bigframes.ml.impute.SimpleImputer.fit

fit( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], y=None, ) -> bigframes.ml.impute.SimpleImputer

Fit the imputer on X.

See more: bigframes.ml.impute.SimpleImputer.fit

bigframes.ml.impute.SimpleImputer.fit_transform

fit_transform( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], y: typing.Optional[ typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ] ] = None, ) -> bigframes.dataframe.DataFrame

Fit to data, then transform it.

See more: bigframes.ml.impute.SimpleImputer.fit_transform

bigframes.ml.impute.SimpleImputer.get_params

get_params(deep: bool = True) -> typing.Dict[str, typing.Any]

Get parameters for this estimator.

See more: bigframes.ml.impute.SimpleImputer.get_params

bigframes.ml.impute.SimpleImputer.to_gbq

to_gbq(model_name: str, replace: bool = False) -> bigframes.ml.base._T

Save the transformer as a BigQuery model.

See more: bigframes.ml.impute.SimpleImputer.to_gbq

bigframes.ml.impute.SimpleImputer.transform

transform( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], ) -> bigframes.dataframe.DataFrame

Impute all missing values in X.

See more: bigframes.ml.impute.SimpleImputer.transform

bigframes.ml.linear_model.LinearRegression.__repr__

__repr__()

Print the estimator's constructor with all non-default parameter values.

See more: bigframes.ml.linear_model.LinearRegression.repr

bigframes.ml.linear_model.LinearRegression.fit

fit( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], y: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], X_eval: typing.Optional[ typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ] ] = None, y_eval: typing.Optional[ typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ] ] = None, ) -> bigframes.ml.base._T

bigframes.ml.linear_model.LinearRegression.get_params

get_params(deep: bool = True) -> typing.Dict[str, typing.Any]

Get parameters for this estimator.

See more: bigframes.ml.linear_model.LinearRegression.get_params

bigframes.ml.linear_model.LinearRegression.global_explain

global_explain() -> bigframes.dataframe.DataFrame

Provide explanations for an entire linear regression model.

See more: bigframes.ml.linear_model.LinearRegression.global_explain

bigframes.ml.linear_model.LinearRegression.predict

predict( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], ) -> bigframes.dataframe.DataFrame

Predict using the linear model.

See more: bigframes.ml.linear_model.LinearRegression.predict

bigframes.ml.linear_model.LinearRegression.predict_explain

predict_explain( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], *, top_k_features: int = 5 ) -> bigframes.dataframe.DataFrame

Explain predictions for a linear regression model.

See more: bigframes.ml.linear_model.LinearRegression.predict_explain

bigframes.ml.linear_model.LinearRegression.register

register(vertex_ai_model_id: typing.Optional[str] = None) -> bigframes.ml.base._T

Register the model to Vertex AI.

See more: bigframes.ml.linear_model.LinearRegression.register

bigframes.ml.linear_model.LinearRegression.score

score( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], y: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], ) -> bigframes.dataframe.DataFrame

Calculate evaluation metrics of the model.

See more: bigframes.ml.linear_model.LinearRegression.score

bigframes.ml.linear_model.LinearRegression.to_gbq

to_gbq( model_name: str, replace: bool = False ) -> bigframes.ml.linear_model.LinearRegression

Save the model to BigQuery.

See more: bigframes.ml.linear_model.LinearRegression.to_gbq

bigframes.ml.linear_model.LogisticRegression.__repr__

__repr__()

Print the estimator's constructor with all non-default parameter values.

See more: bigframes.ml.linear_model.LogisticRegression.repr

bigframes.ml.linear_model.LogisticRegression.fit

fit( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], y: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], X_eval: typing.Optional[ typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ] ] = None, y_eval: typing.Optional[ typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ] ] = None, ) -> bigframes.ml.base._T

Fit the model according to the given training data.

See more: bigframes.ml.linear_model.LogisticRegression.fit

bigframes.ml.linear_model.LogisticRegression.get_params

get_params(deep: bool = True) -> typing.Dict[str, typing.Any]

Get parameters for this estimator.

See more: bigframes.ml.linear_model.LogisticRegression.get_params

bigframes.ml.linear_model.LogisticRegression.predict

predict( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], ) -> bigframes.dataframe.DataFrame

Predict class labels for samples in X.

See more: bigframes.ml.linear_model.LogisticRegression.predict

bigframes.ml.linear_model.LogisticRegression.predict_explain

predict_explain( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], *, top_k_features: int = 5 ) -> bigframes.dataframe.DataFrame

Explain predictions for a logistic regression model.

See more: bigframes.ml.linear_model.LogisticRegression.predict_explain

bigframes.ml.linear_model.LogisticRegression.register

register(vertex_ai_model_id: typing.Optional[str] = None) -> bigframes.ml.base._T

Register the model to Vertex AI.

See more: bigframes.ml.linear_model.LogisticRegression.register

bigframes.ml.linear_model.LogisticRegression.score

score( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], y: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], ) -> bigframes.dataframe.DataFrame

Return the mean accuracy on the given test data and labels.

See more: bigframes.ml.linear_model.LogisticRegression.score

bigframes.ml.linear_model.LogisticRegression.to_gbq

to_gbq( model_name: str, replace: bool = False ) -> bigframes.ml.linear_model.LogisticRegression

Save the model to BigQuery.

See more: bigframes.ml.linear_model.LogisticRegression.to_gbq

bigframes.ml.llm.Claude3TextGenerator.__repr__

__repr__()

Print the estimator's constructor with all non-default parameter values.

See more: bigframes.ml.llm.Claude3TextGenerator.repr

bigframes.ml.llm.Claude3TextGenerator.get_params

get_params(deep: bool = True) -> typing.Dict[str, typing.Any]

Get parameters for this estimator.

See more: bigframes.ml.llm.Claude3TextGenerator.get_params

bigframes.ml.llm.Claude3TextGenerator.predict

predict( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], *, max_output_tokens: int = 128, top_k: int = 40, top_p: float = 0.95, max_retries: int = 0 ) -> bigframes.dataframe.DataFrame

Predict the result from input DataFrame.

See more: bigframes.ml.llm.Claude3TextGenerator.predict

bigframes.ml.llm.Claude3TextGenerator.to_gbq

to_gbq( model_name: str, replace: bool = False ) -> bigframes.ml.llm.Claude3TextGenerator

Save the model to BigQuery.

See more: bigframes.ml.llm.Claude3TextGenerator.to_gbq

bigframes.ml.llm.GeminiTextGenerator.__repr__

__repr__()

Print the estimator's constructor with all non-default parameter values.

See more: bigframes.ml.llm.GeminiTextGenerator.repr

bigframes.ml.llm.GeminiTextGenerator.fit

fit( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], y: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], ) -> bigframes.ml.llm.GeminiTextGenerator

Fine tune GeminiTextGenerator model.

See more: bigframes.ml.llm.GeminiTextGenerator.fit

bigframes.ml.llm.GeminiTextGenerator.get_params

get_params(deep: bool = True) -> typing.Dict[str, typing.Any]

Get parameters for this estimator.

See more: bigframes.ml.llm.GeminiTextGenerator.get_params

bigframes.ml.llm.GeminiTextGenerator.predict

predict( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], *, temperature: float = 0.9, max_output_tokens: int = 8192, top_k: int = 40, top_p: float = 1.0, ground_with_google_search: bool = False, max_retries: int = 0, prompt: typing.Optional[ typing.Iterable[typing.Union[str, bigframes.series.Series]] ] = None, output_schema: typing.Optional[typing.Mapping[str, str]] = None ) -> bigframes.dataframe.DataFrame

Predict the result from input DataFrame.

See more: bigframes.ml.llm.GeminiTextGenerator.predict

bigframes.ml.llm.GeminiTextGenerator.score

score( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], y: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], task_type: typing.Literal[ "text_generation", "classification", "summarization", "question_answering" ] = "text_generation", ) -> bigframes.dataframe.DataFrame

Calculate evaluation metrics of the model.

See more: bigframes.ml.llm.GeminiTextGenerator.score

bigframes.ml.llm.GeminiTextGenerator.to_gbq

to_gbq( model_name: str, replace: bool = False ) -> bigframes.ml.llm.GeminiTextGenerator

Save the model to BigQuery.

See more: bigframes.ml.llm.GeminiTextGenerator.to_gbq

bigframes.ml.llm.MultimodalEmbeddingGenerator.__repr__

__repr__()

Print the estimator's constructor with all non-default parameter values.

See more: bigframes.ml.llm.MultimodalEmbeddingGenerator.repr

bigframes.ml.llm.MultimodalEmbeddingGenerator.get_params

get_params(deep: bool = True) -> typing.Dict[str, typing.Any]

Get parameters for this estimator.

See more: bigframes.ml.llm.MultimodalEmbeddingGenerator.get_params

bigframes.ml.llm.MultimodalEmbeddingGenerator.predict

predict( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], *, max_retries: int = 0 ) -> bigframes.dataframe.DataFrame

Predict the result from input DataFrame.

See more: bigframes.ml.llm.MultimodalEmbeddingGenerator.predict

bigframes.ml.llm.MultimodalEmbeddingGenerator.to_gbq

to_gbq( model_name: str, replace: bool = False ) -> bigframes.ml.llm.MultimodalEmbeddingGenerator

Save the model to BigQuery.

See more: bigframes.ml.llm.MultimodalEmbeddingGenerator.to_gbq

bigframes.ml.llm.TextEmbeddingGenerator.__repr__

__repr__()

Print the estimator's constructor with all non-default parameter values.

See more: bigframes.ml.llm.TextEmbeddingGenerator.repr

bigframes.ml.llm.TextEmbeddingGenerator.get_params

get_params(deep: bool = True) -> typing.Dict[str, typing.Any]

Get parameters for this estimator.

See more: bigframes.ml.llm.TextEmbeddingGenerator.get_params

bigframes.ml.llm.TextEmbeddingGenerator.predict

predict( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], *, max_retries: int = 0 ) -> bigframes.dataframe.DataFrame

Predict the result from input DataFrame.

See more: bigframes.ml.llm.TextEmbeddingGenerator.predict

bigframes.ml.llm.TextEmbeddingGenerator.to_gbq

to_gbq( model_name: str, replace: bool = False ) -> bigframes.ml.llm.TextEmbeddingGenerator

Save the model to BigQuery.

See more: bigframes.ml.llm.TextEmbeddingGenerator.to_gbq

bigframes.ml.model_selection.KFold.get_n_splits

get_n_splits() -> int

Returns the number of splitting iterations in the cross-validator.

See more: bigframes.ml.model_selection.KFold.get_n_splits

bigframes.ml.model_selection.KFold.split

split( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], y: typing.Optional[ typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ] ] = None, ) -> typing.Generator[ tuple[ typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series, NoneType], ..., ], None, None, ]

Generate indices to split data into training and test set.

See more: bigframes.ml.model_selection.KFold.split

bigframes.ml.pipeline.Pipeline.__repr__

__repr__()

Print the estimator's constructor with all non-default parameter values.

See more: bigframes.ml.pipeline.Pipeline.repr

bigframes.ml.pipeline.Pipeline.fit

fit( X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], y: typing.Optional[ typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series] ] = None, ) -> bigframes.ml.pipeline.Pipeline

Fit the model.

See more: bigframes.ml.pipeline.Pipeline.fit

bigframes.ml.pipeline.Pipeline.get_params

get_params(deep: bool = True) -> typing.Dict[str, typing.Any]

Get parameters for this estimator.

See more: bigframes.ml.pipeline.Pipeline.get_params

bigframes.ml.pipeline.Pipeline.predict

predict( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], ) -> bigframes.dataframe.DataFrame

API documentation for predict method.

See more: bigframes.ml.pipeline.Pipeline.predict

bigframes.ml.pipeline.Pipeline.score

score( X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], y: typing.Optional[ typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series] ] = None, ) -> bigframes.dataframe.DataFrame

API documentation for score method.

See more: bigframes.ml.pipeline.Pipeline.score

bigframes.ml.pipeline.Pipeline.to_gbq

to_gbq(model_name: str, replace: bool = False) -> bigframes.ml.pipeline.Pipeline

Save the pipeline to BigQuery.

See more: bigframes.ml.pipeline.Pipeline.to_gbq

bigframes.ml.preprocessing.KBinsDiscretizer.__repr__

__repr__()

Print the estimator's constructor with all non-default parameter values.

See more: bigframes.ml.preprocessing.KBinsDiscretizer.repr

bigframes.ml.preprocessing.KBinsDiscretizer.fit

fit( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], y=None, ) -> bigframes.ml.preprocessing.KBinsDiscretizer

bigframes.ml.preprocessing.KBinsDiscretizer.fit_transform

fit_transform( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], y: typing.Optional[ typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ] ] = None, ) -> bigframes.dataframe.DataFrame

Fit to data, then transform it.

See more: bigframes.ml.preprocessing.KBinsDiscretizer.fit_transform

bigframes.ml.preprocessing.KBinsDiscretizer.get_params

get_params(deep: bool = True) -> typing.Dict[str, typing.Any]

Get parameters for this estimator.

See more: bigframes.ml.preprocessing.KBinsDiscretizer.get_params

bigframes.ml.preprocessing.KBinsDiscretizer.to_gbq

to_gbq(model_name: str, replace: bool = False) -> bigframes.ml.base._T

Save the transformer as a BigQuery model.

See more: bigframes.ml.preprocessing.KBinsDiscretizer.to_gbq

bigframes.ml.preprocessing.KBinsDiscretizer.transform

transform( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], ) -> bigframes.dataframe.DataFrame

bigframes.ml.preprocessing.LabelEncoder.__repr__

__repr__()

Print the estimator's constructor with all non-default parameter values.

See more: bigframes.ml.preprocessing.LabelEncoder.repr

bigframes.ml.preprocessing.LabelEncoder.fit

fit( y: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], ) -> bigframes.ml.preprocessing.LabelEncoder

Fit label encoder.

See more: bigframes.ml.preprocessing.LabelEncoder.fit

bigframes.ml.preprocessing.LabelEncoder.fit_transform

fit_transform( y: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], ) -> bigframes.dataframe.DataFrame

API documentation for fit_transform method.

See more: bigframes.ml.preprocessing.LabelEncoder.fit_transform

bigframes.ml.preprocessing.LabelEncoder.get_params

get_params(deep: bool = True) -> typing.Dict[str, typing.Any]

Get parameters for this estimator.

See more: bigframes.ml.preprocessing.LabelEncoder.get_params

bigframes.ml.preprocessing.LabelEncoder.to_gbq

to_gbq(model_name: str, replace: bool = False) -> bigframes.ml.base._T

Save the transformer as a BigQuery model.

See more: bigframes.ml.preprocessing.LabelEncoder.to_gbq

bigframes.ml.preprocessing.LabelEncoder.transform

transform( y: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], ) -> bigframes.dataframe.DataFrame

Transform y using label encoding.

See more: bigframes.ml.preprocessing.LabelEncoder.transform

bigframes.ml.preprocessing.MaxAbsScaler.__repr__

__repr__()

Print the estimator's constructor with all non-default parameter values.

See more: bigframes.ml.preprocessing.MaxAbsScaler.repr

bigframes.ml.preprocessing.MaxAbsScaler.fit

fit( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], y=None, ) -> bigframes.ml.preprocessing.MaxAbsScaler

Compute the maximum absolute value to be used for later scaling.

See more: bigframes.ml.preprocessing.MaxAbsScaler.fit

bigframes.ml.preprocessing.MaxAbsScaler.fit_transform

fit_transform( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], y: typing.Optional[ typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ] ] = None, ) -> bigframes.dataframe.DataFrame

Fit to data, then transform it.

See more: bigframes.ml.preprocessing.MaxAbsScaler.fit_transform

bigframes.ml.preprocessing.MaxAbsScaler.get_params

get_params(deep: bool = True) -> typing.Dict[str, typing.Any]

Get parameters for this estimator.

See more: bigframes.ml.preprocessing.MaxAbsScaler.get_params

bigframes.ml.preprocessing.MaxAbsScaler.to_gbq

to_gbq(model_name: str, replace: bool = False) -> bigframes.ml.base._T

Save the transformer as a BigQuery model.

See more: bigframes.ml.preprocessing.MaxAbsScaler.to_gbq

bigframes.ml.preprocessing.MaxAbsScaler.transform

transform( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], ) -> bigframes.dataframe.DataFrame

bigframes.ml.preprocessing.MinMaxScaler.__repr__

__repr__()

Print the estimator's constructor with all non-default parameter values.

See more: bigframes.ml.preprocessing.MinMaxScaler.repr

bigframes.ml.preprocessing.MinMaxScaler.fit

fit( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], y=None, ) -> bigframes.ml.preprocessing.MinMaxScaler

Compute the minimum and maximum to be used for later scaling.

See more: bigframes.ml.preprocessing.MinMaxScaler.fit

bigframes.ml.preprocessing.MinMaxScaler.fit_transform

fit_transform( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], y: typing.Optional[ typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ] ] = None, ) -> bigframes.dataframe.DataFrame

Fit to data, then transform it.

See more: bigframes.ml.preprocessing.MinMaxScaler.fit_transform

bigframes.ml.preprocessing.MinMaxScaler.get_params

get_params(deep: bool = True) -> typing.Dict[str, typing.Any]

Get parameters for this estimator.

See more: bigframes.ml.preprocessing.MinMaxScaler.get_params

bigframes.ml.preprocessing.MinMaxScaler.to_gbq

to_gbq(model_name: str, replace: bool = False) -> bigframes.ml.base._T

Save the transformer as a BigQuery model.

See more: bigframes.ml.preprocessing.MinMaxScaler.to_gbq

bigframes.ml.preprocessing.MinMaxScaler.transform

transform( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], ) -> bigframes.dataframe.DataFrame

bigframes.ml.preprocessing.OneHotEncoder.__repr__

__repr__()

Print the estimator's constructor with all non-default parameter values.

See more: bigframes.ml.preprocessing.OneHotEncoder.repr

bigframes.ml.preprocessing.OneHotEncoder.fit

fit( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], y=None, ) -> bigframes.ml.preprocessing.OneHotEncoder

Fit OneHotEncoder to X.

See more: bigframes.ml.preprocessing.OneHotEncoder.fit

bigframes.ml.preprocessing.OneHotEncoder.fit_transform

fit_transform( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], y: typing.Optional[ typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ] ] = None, ) -> bigframes.dataframe.DataFrame

API documentation for fit_transform method.

See more: bigframes.ml.preprocessing.OneHotEncoder.fit_transform

bigframes.ml.preprocessing.OneHotEncoder.get_params

get_params(deep: bool = True) -> typing.Dict[str, typing.Any]

Get parameters for this estimator.

See more: bigframes.ml.preprocessing.OneHotEncoder.get_params

bigframes.ml.preprocessing.OneHotEncoder.to_gbq

to_gbq(model_name: str, replace: bool = False) -> bigframes.ml.base._T

Save the transformer as a BigQuery model.

See more: bigframes.ml.preprocessing.OneHotEncoder.to_gbq

bigframes.ml.preprocessing.OneHotEncoder.transform

transform( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], ) -> bigframes.dataframe.DataFrame

Transform X using one-hot encoding.

See more: bigframes.ml.preprocessing.OneHotEncoder.transform

bigframes.ml.preprocessing.PolynomialFeatures.__repr__

__repr__()

Print the estimator's constructor with all non-default parameter values.

See more: bigframes.ml.preprocessing.PolynomialFeatures.repr

bigframes.ml.preprocessing.PolynomialFeatures.fit

fit( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], y=None, ) -> bigframes.ml.preprocessing.PolynomialFeatures

Compute number of output features.

See more: bigframes.ml.preprocessing.PolynomialFeatures.fit

bigframes.ml.preprocessing.PolynomialFeatures.fit_transform

fit_transform( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], y: typing.Optional[ typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ] ] = None, ) -> bigframes.dataframe.DataFrame

Fit to data, then transform it.

See more: bigframes.ml.preprocessing.PolynomialFeatures.fit_transform

bigframes.ml.preprocessing.PolynomialFeatures.get_params

get_params(deep: bool = True) -> typing.Dict[str, typing.Any]

Get parameters for this estimator.

See more: bigframes.ml.preprocessing.PolynomialFeatures.get_params

bigframes.ml.preprocessing.PolynomialFeatures.to_gbq

to_gbq(model_name: str, replace: bool = False) -> bigframes.ml.base._T

Save the transformer as a BigQuery model.

See more: bigframes.ml.preprocessing.PolynomialFeatures.to_gbq

bigframes.ml.preprocessing.PolynomialFeatures.transform

transform( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], ) -> bigframes.dataframe.DataFrame

Transform data to polynomial features.

See more: bigframes.ml.preprocessing.PolynomialFeatures.transform

bigframes.ml.preprocessing.StandardScaler.__repr__

__repr__()

Print the estimator's constructor with all non-default parameter values.

See more: bigframes.ml.preprocessing.StandardScaler.repr

bigframes.ml.preprocessing.StandardScaler.fit

fit( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], y=None, ) -> bigframes.ml.preprocessing.StandardScaler

Compute the mean and std to be used for later scaling.

See more: bigframes.ml.preprocessing.StandardScaler.fit

bigframes.ml.preprocessing.StandardScaler.fit_transform

fit_transform( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], y: typing.Optional[ typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ] ] = None, ) -> bigframes.dataframe.DataFrame

Fit to data, then transform it.

See more: bigframes.ml.preprocessing.StandardScaler.fit_transform

bigframes.ml.preprocessing.StandardScaler.get_params

get_params(deep: bool = True) -> typing.Dict[str, typing.Any]

Get parameters for this estimator.

See more: bigframes.ml.preprocessing.StandardScaler.get_params

bigframes.ml.preprocessing.StandardScaler.to_gbq

to_gbq(model_name: str, replace: bool = False) -> bigframes.ml.base._T

Save the transformer as a BigQuery model.

See more: bigframes.ml.preprocessing.StandardScaler.to_gbq

bigframes.ml.preprocessing.StandardScaler.transform

transform( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], ) -> bigframes.dataframe.DataFrame

Perform standardization by centering and scaling.

See more: bigframes.ml.preprocessing.StandardScaler.transform

bigframes.ml.remote.VertexAIModel.__repr__

__repr__()

Print the estimator's constructor with all non-default parameter values.

See more: bigframes.ml.remote.VertexAIModel.repr

bigframes.ml.remote.VertexAIModel.get_params

get_params(deep: bool = True) -> typing.Dict[str, typing.Any]

Get parameters for this estimator.

See more: bigframes.ml.remote.VertexAIModel.get_params

bigframes.ml.remote.VertexAIModel.predict

predict( X: typing.Union[ bigframes.dataframe.DataFrame, bigframes.series.Series, pandas.core.frame.DataFrame, pandas.core.series.Series, ], ) -> bigframes.dataframe.DataFrame

Predict the result from the input DataFrame.

See more: bigframes.ml.remote.VertexAIModel.predict

bigframes.operations.ai.AIAccessor.classify

classify( instruction: str, model, labels: typing.Sequence[str], output_column: str = "result", ground_with_google_search: bool = False, )

Classifies the rows of dataframes based on user instruction into the provided labels.

See more: bigframes.operations.ai.AIAccessor.classify

bigframes.operations.ai.AIAccessor.filter

filter(instruction: str, model, ground_with_google_search: bool = False)

Filters the DataFrame with the semantics of the user instruction.

See more: bigframes.operations.ai.AIAccessor.filter

bigframes.operations.ai.AIAccessor.forecast

forecast( timestamp_column: str, data_column: str, *, model: str = "TimesFM 2.0", id_columns: typing.Optional[typing.Iterable[str]] = None, horizon: int = 10, confidence_level: float = 0.95 )

Forecast time series at future horizon.

See more: bigframes.operations.ai.AIAccessor.forecast

bigframes.operations.ai.AIAccessor.join

join(other, instruction: str, model, ground_with_google_search: bool = False)

Joines two dataframes by applying the instruction over each pair of rows from the left and right table.

See more: bigframes.operations.ai.AIAccessor.join

bigframes.operations.ai.AIAccessor.map

map( instruction: str, model, output_schema: typing.Optional[typing.Dict[str, str]] = None, ground_with_google_search: bool = False, )

Maps the DataFrame with the semantics of the user instruction.

See more: bigframes.operations.ai.AIAccessor.map

bigframes.operations.ai.AIAccessor.search

search( search_column: str, query: str, top_k: int, model, score_column: typing.Optional[str] = None, )

Performs AI semantic search on the DataFrame.

See more: bigframes.operations.ai.AIAccessor.search

bigframes.operations.ai.AIAccessor.sim_join

sim_join( other, left_on: str, right_on: str, model, top_k: int = 3, score_column: typing.Optional[str] = None, max_rows: int = 1000, )

Joins two dataframes based on the similarity of the specified columns.

See more: bigframes.operations.ai.AIAccessor.sim_join

bigframes.operations.blob.BlobAccessor.audio_transcribe

audio_transcribe( *, engine: typing.Literal["bigquery"] = "bigquery", connection: typing.Optional[str] = None, model_name: typing.Optional[ typing.Literal["gemini-2.0-flash-001", "gemini-2.0-flash-lite-001"] ] = None, verbose: bool = False ) -> bigframes.series.Series

Transcribe audio content using a Gemini multimodal model.

See more: bigframes.operations.blob.BlobAccessor.audio_transcribe

bigframes.operations.blob.BlobAccessor.authorizer

authorizer() -> bigframes.series.Series

Authorizers of the Blob.

See more: bigframes.operations.blob.BlobAccessor.authorizer

bigframes.operations.blob.BlobAccessor.content_type

content_type() -> bigframes.series.Series

Retrieve the content type of the Blob.

See more: bigframes.operations.blob.BlobAccessor.content_type

bigframes.operations.blob.BlobAccessor.display

display( n: int = 3, *, content_type: str = "", width: typing.Optional[int] = None, height: typing.Optional[int] = None )

Display the blob content in the IPython Notebook environment.

See more: bigframes.operations.blob.BlobAccessor.display

bigframes.operations.blob.BlobAccessor.exif

exif( *, engine: typing.Literal[None, "pillow"] = None, connection: typing.Optional[str] = None, max_batching_rows: int = 8192, container_cpu: typing.Union[float, int] = 0.33, container_memory: str = "512Mi", verbose: bool = False ) -> bigframes.series.Series

Extract EXIF data.

See more: bigframes.operations.blob.BlobAccessor.exif

bigframes.operations.blob.BlobAccessor.get_runtime_json_str

get_runtime_json_str( mode: str = "R", *, with_metadata: bool = False ) -> bigframes.series.Series

Get the runtime (contains signed URL to access gcs data) and apply the ToJSONSTring transformation.

See more: bigframes.operations.blob.BlobAccessor.get_runtime_json_str

bigframes.operations.blob.BlobAccessor.image_blur

image_blur( ksize: tuple[int, int], *, engine: typing.Literal[None, "opencv"] = None, dst: typing.Optional[typing.Union[str, bigframes.series.Series]] = None, connection: typing.Optional[str] = None, max_batching_rows: int = 8192, container_cpu: typing.Union[float, int] = 0.33, container_memory: str = "512Mi", verbose: bool = False ) -> bigframes.series.Series

bigframes.operations.blob.BlobAccessor.image_normalize

image_normalize( *, engine: typing.Literal[None, "opencv"] = None, alpha: float = 1.0, beta: float = 0.0, norm_type: str = "l2", dst: typing.Optional[typing.Union[str, bigframes.series.Series]] = None, connection: typing.Optional[str] = None, max_batching_rows: int = 8192, container_cpu: typing.Union[float, int] = 0.33, container_memory: str = "512Mi", verbose: bool = False ) -> bigframes.series.Series

bigframes.operations.blob.BlobAccessor.image_resize

image_resize( dsize: tuple[int, int] = (0, 0), *, engine: typing.Literal[None, "opencv"] = None, fx: float = 0.0, fy: float = 0.0, dst: typing.Optional[typing.Union[str, bigframes.series.Series]] = None, connection: typing.Optional[str] = None, max_batching_rows: int = 8192, container_cpu: typing.Union[float, int] = 0.33, container_memory: str = "512Mi", verbose: bool = False )

bigframes.operations.blob.BlobAccessor.md5_hash

md5_hash() -> bigframes.series.Series

Retrieve the md5 hash of the Blob.

See more: bigframes.operations.blob.BlobAccessor.md5_hash

bigframes.operations.blob.BlobAccessor.metadata

metadata() -> bigframes.series.Series

Retrieve the metadata of the Blob.

See more: bigframes.operations.blob.BlobAccessor.metadata

bigframes.operations.blob.BlobAccessor.pdf_chunk

pdf_chunk( *, engine: typing.Literal[None, "pypdf"] = None, connection: typing.Optional[str] = None, chunk_size: int = 2000, overlap_size: int = 200, max_batching_rows: int = 1, container_cpu: typing.Union[float, int] = 2, container_memory: str = "1Gi", verbose: bool = False ) -> bigframes.series.Series

Extracts and chunks text from PDF URLs and saves the text as arrays of strings.

See more: bigframes.operations.blob.BlobAccessor.pdf_chunk

bigframes.operations.blob.BlobAccessor.pdf_extract

pdf_extract( *, engine: typing.Literal[None, "pypdf"] = None, connection: typing.Optional[str] = None, max_batching_rows: int = 1, container_cpu: typing.Union[float, int] = 2, container_memory: str = "1Gi", verbose: bool = False ) -> bigframes.series.Series

Extracts text from PDF URLs and saves the text as string.

See more: bigframes.operations.blob.BlobAccessor.pdf_extract

bigframes.operations.blob.BlobAccessor.read_url

read_url() -> bigframes.series.Series

Retrieve the read URL of the Blob.

See more: bigframes.operations.blob.BlobAccessor.read_url

bigframes.operations.blob.BlobAccessor.size

size() -> bigframes.series.Series

Retrieve the file size of the Blob.

See more: bigframes.operations.blob.BlobAccessor.size

bigframes.operations.blob.BlobAccessor.updated

updated() -> bigframes.series.Series

Retrieve the updated time of the Blob.

See more: bigframes.operations.blob.BlobAccessor.updated

bigframes.operations.blob.BlobAccessor.uri

uri() -> bigframes.series.Series

URIs of the Blob.

See more: bigframes.operations.blob.BlobAccessor.uri

bigframes.operations.blob.BlobAccessor.version

version() -> bigframes.series.Series

Versions of the Blob.

See more: bigframes.operations.blob.BlobAccessor.version

bigframes.operations.blob.BlobAccessor.write_url

write_url() -> bigframes.series.Series

Retrieve the write URL of the Blob.

See more: bigframes.operations.blob.BlobAccessor.write_url

bigframes.operations.datetimes.DatetimeMethods.day_name

day_name() -> bigframes.series.Series

Return the day names in english.

See more: bigframes.operations.datetimes.DatetimeMethods.day_name

bigframes.operations.datetimes.DatetimeMethods.floor

floor(freq: str) -> bigframes.series.Series

Perform floor operation on the data to the specified freq.

See more: bigframes.operations.datetimes.DatetimeMethods.floor

bigframes.operations.datetimes.DatetimeMethods.isocalendar

isocalendar() -> bigframes.dataframe.DataFrame

Calculate year, week, and day according to the ISO 8601 standard.

See more: bigframes.operations.datetimes.DatetimeMethods.isocalendar

bigframes.operations.datetimes.DatetimeMethods.normalize

normalize() -> bigframes.series.Series

Convert times to midnight.

See more: bigframes.operations.datetimes.DatetimeMethods.normalize

bigframes.operations.datetimes.DatetimeMethods.strftime

strftime(date_format: str) -> bigframes.series.Series

Convert to string Series using specified date_format.

See more: bigframes.operations.datetimes.DatetimeMethods.strftime

bigframes.operations.datetimes.DatetimeMethods.total_seconds

total_seconds() -> bigframes.series.Series

Return total duration of each element expressed in seconds.

See more: bigframes.operations.datetimes.DatetimeMethods.total_seconds

bigframes.operations.lists.ListAccessor.__getitem__

__getitem__(key: typing.Union[int, slice]) -> bigframes.series.Series

Index or slice lists in the Series.

See more: bigframes.operations.lists.ListAccessor.getitem

bigframes.operations.lists.ListAccessor.len

len()

Compute the length of each list in the Series.

See more: bigframes.operations.lists.ListAccessor.len

bigframes.operations.plotting.PlotAccessor.area

area( x: typing.Optional[typing.Hashable] = None, y: typing.Optional[typing.Hashable] = None, stacked: bool = True, **kwargs )

Draw a stacked area plot.

See more: bigframes.operations.plotting.PlotAccessor.area

bigframes.operations.plotting.PlotAccessor.bar

bar( x: typing.Optional[typing.Hashable] = None, y: typing.Optional[typing.Hashable] = None, **kwargs )

Draw a vertical bar plot.

See more: bigframes.operations.plotting.PlotAccessor.bar

bigframes.operations.plotting.PlotAccessor.barh

barh( x: typing.Optional[typing.Hashable] = None, y: typing.Optional[typing.Hashable] = None, **kwargs )

Draw a horizontal bar plot.

See more: bigframes.operations.plotting.PlotAccessor.barh

bigframes.operations.plotting.PlotAccessor.hist

hist(by: typing.Optional[typing.Sequence[str]] = None, bins: int = 10, **kwargs)

Draw one histogram of the DataFrame’s columns.

See more: bigframes.operations.plotting.PlotAccessor.hist

bigframes.operations.plotting.PlotAccessor.line

line( x: typing.Optional[typing.Hashable] = None, y: typing.Optional[typing.Hashable] = None, **kwargs )

Plot Series or DataFrame as lines.

See more: bigframes.operations.plotting.PlotAccessor.line

bigframes.operations.plotting.PlotAccessor.pie

pie(y: typing.Optional[typing.Hashable] = None, **kwargs)

Generate a pie plot.

See more: bigframes.operations.plotting.PlotAccessor.pie

bigframes.operations.plotting.PlotAccessor.scatter

scatter( x: typing.Optional[typing.Hashable] = None, y: typing.Optional[typing.Hashable] = None, s: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] = None, c: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] = None, **kwargs )

Create a scatter plot with varying marker point size and color.

See more: bigframes.operations.plotting.PlotAccessor.scatter

bigframes.operations.plotting.PlotAccessor

PlotAccessor(data)

Make plots of Series or DataFrame with the matplotlib backend.

See more: bigframes.operations.plotting.PlotAccessor

bigframes.operations.strings.StringMethods.capitalize

capitalize() -> bigframes.operations.strings.T

Convert strings in the Series/Index to be capitalized.

See more: bigframes.operations.strings.StringMethods.capitalize

bigframes.operations.strings.StringMethods.cat

cat( others: typing.Union[ str, bigframes.core.indexes.base.Index, bigframes.series.Series ], *, join: typing.Literal["outer", "left"] = "left" ) -> bigframes.operations.strings.T

Concatenate strings in the Series/Index with given separator.

See more: bigframes.operations.strings.StringMethods.cat

bigframes.operations.strings.StringMethods.center

center(width: int, fillchar: str = " ") -> bigframes.operations.strings.T

Pad left and right side of strings in the Series/Index.

See more: bigframes.operations.strings.StringMethods.center

bigframes.operations.strings.StringMethods.contains

contains( pat, case: bool = True, flags: int = 0, *, regex: bool = True ) -> bigframes.operations.strings.T

Test if pattern or regex is contained within a string of a Series or Index.

See more: bigframes.operations.strings.StringMethods.contains

bigframes.operations.strings.StringMethods.endswith

endswith(pat: typing.Union[str, tuple[str, ...]]) -> bigframes.operations.strings.T

Test if the end of each string element matches a pattern.

See more: bigframes.operations.strings.StringMethods.endswith

bigframes.operations.strings.StringMethods.extract

extract(pat: str, flags: int = 0) -> bigframes.dataframe.DataFrame

Extract capture groups in the regex pat as columns in a DataFrame.

See more: bigframes.operations.strings.StringMethods.extract

bigframes.operations.strings.StringMethods.find

find( sub: str, start: typing.Optional[int] = None, end: typing.Optional[int] = None ) -> bigframes.operations.strings.T

Return lowest indexes in each strings in the Series/Index.

See more: bigframes.operations.strings.StringMethods.find

bigframes.operations.strings.StringMethods.fullmatch

fullmatch(pat, case=True, flags=0) -> bigframes.operations.strings.T

Determine if each string entirely matches a regular expression.

See more: bigframes.operations.strings.StringMethods.fullmatch

bigframes.operations.strings.StringMethods.get

get(i: int) -> bigframes.operations.strings.T

Extract element from each component at specified position or with specified key.

See more: bigframes.operations.strings.StringMethods.get

bigframes.operations.strings.StringMethods.isalnum

isalnum() -> bigframes.operations.strings.T

Check whether all characters in each string are alphanumeric.

See more: bigframes.operations.strings.StringMethods.isalnum

bigframes.operations.strings.StringMethods.isalpha

isalpha() -> bigframes.operations.strings.T

Check whether all characters in each string are alphabetic.

See more: bigframes.operations.strings.StringMethods.isalpha

bigframes.operations.strings.StringMethods.isdecimal

isdecimal() -> bigframes.operations.strings.T

Check whether all characters in each string are decimal.

See more: bigframes.operations.strings.StringMethods.isdecimal

bigframes.operations.strings.StringMethods.isdigit

isdigit() -> bigframes.operations.strings.T

Check whether all characters in each string are digits.

See more: bigframes.operations.strings.StringMethods.isdigit

bigframes.operations.strings.StringMethods.islower

islower() -> bigframes.operations.strings.T

Check whether all characters in each string are lowercase.

See more: bigframes.operations.strings.StringMethods.islower

bigframes.operations.strings.StringMethods.isnumeric

isnumeric() -> bigframes.operations.strings.T

Check whether all characters in each string are numeric.

See more: bigframes.operations.strings.StringMethods.isnumeric

bigframes.operations.strings.StringMethods.isspace

isspace() -> bigframes.operations.strings.T

Check whether all characters in each string are whitespace.

See more: bigframes.operations.strings.StringMethods.isspace

bigframes.operations.strings.StringMethods.isupper

isupper() -> bigframes.operations.strings.T

Check whether all characters in each string are uppercase.

See more: bigframes.operations.strings.StringMethods.isupper

bigframes.operations.strings.StringMethods.join

join(sep: str) -> bigframes.operations.strings.T

Join lists contained as elements in the Series/Index with passed delimiter.

See more: bigframes.operations.strings.StringMethods.join

bigframes.operations.strings.StringMethods.len

len() -> bigframes.operations.strings.T

Compute the length of each element in the Series/Index.

See more: bigframes.operations.strings.StringMethods.len

bigframes.operations.strings.StringMethods.ljust

ljust(width, fillchar=" ") -> bigframes.operations.strings.T

Pad right side of strings in the Series/Index up to width.

See more: bigframes.operations.strings.StringMethods.ljust

bigframes.operations.strings.StringMethods.lower

lower() -> bigframes.operations.strings.T

Convert strings in the Series/Index to lowercase.

See more: bigframes.operations.strings.StringMethods.lower

bigframes.operations.strings.StringMethods.lstrip

lstrip(to_strip: typing.Optional[str] = None) -> bigframes.operations.strings.T

Remove leading characters.

See more: bigframes.operations.strings.StringMethods.lstrip

bigframes.operations.strings.StringMethods.match

match(pat, case=True, flags=0) -> bigframes.operations.strings.T

Determine if each string starts with a match of a regular expression.

See more: bigframes.operations.strings.StringMethods.match

bigframes.operations.strings.StringMethods.pad

pad(width, side="left", fillchar=" ") -> bigframes.operations.strings.T

Pad strings in the Series/Index up to width.

See more: bigframes.operations.strings.StringMethods.pad

bigframes.operations.strings.StringMethods.repeat

repeat(repeats: int) -> bigframes.operations.strings.T

Duplicate each string in the Series or Index.

See more: bigframes.operations.strings.StringMethods.repeat

bigframes.operations.strings.StringMethods.replace

replace( pat: typing.Union[str, re.Pattern], repl: str, *, case: typing.Optional[bool] = None, flags: int = 0, regex: bool = False ) -> bigframes.operations.strings.T

Replace each occurrence of pattern/regex in the Series/Index.

See more: bigframes.operations.strings.StringMethods.replace

bigframes.operations.strings.StringMethods.reverse

reverse() -> bigframes.operations.strings.T

Reverse strings in the Series.

See more: bigframes.operations.strings.StringMethods.reverse

bigframes.operations.strings.StringMethods.rjust

rjust(width, fillchar=" ") -> bigframes.operations.strings.T

Pad left side of strings in the Series/Index up to width.

See more: bigframes.operations.strings.StringMethods.rjust

bigframes.operations.strings.StringMethods.rstrip

rstrip(to_strip: typing.Optional[str] = None) -> bigframes.operations.strings.T

Remove trailing characters.

See more: bigframes.operations.strings.StringMethods.rstrip

bigframes.operations.strings.StringMethods.slice

slice( start: typing.Optional[int] = None, stop: typing.Optional[int] = None ) -> bigframes.operations.strings.T

Slice substrings from each element in the Series or Index.

See more: bigframes.operations.strings.StringMethods.slice

bigframes.operations.strings.StringMethods.split

split( pat: str = " ", regex: typing.Optional[bool] = None ) -> bigframes.operations.strings.T

Split strings around given separator/delimiter.

See more: bigframes.operations.strings.StringMethods.split

bigframes.operations.strings.StringMethods.startswith

startswith( pat: typing.Union[str, tuple[str, ...]], ) -> bigframes.operations.strings.T

Test if the start of each string element matches a pattern.

See more: bigframes.operations.strings.StringMethods.startswith

bigframes.operations.strings.StringMethods.strip

strip(to_strip: typing.Optional[str] = None) -> bigframes.operations.strings.T

Remove leading and trailing characters.

See more: bigframes.operations.strings.StringMethods.strip

bigframes.operations.strings.StringMethods.to_blob

to_blob(connection: typing.Optional[str] = None) -> bigframes.operations.strings.T

Create a BigFrames Blob series from a series of URIs.

See more: bigframes.operations.strings.StringMethods.to_blob

bigframes.operations.strings.StringMethods.upper

upper() -> bigframes.operations.strings.T

Convert strings in the Series/Index to uppercase.

See more: bigframes.operations.strings.StringMethods.upper

bigframes.operations.strings.StringMethods.zfill

zfill(width: int) -> bigframes.operations.strings.T

Pad strings in the Series/Index by prepending '0' characters.

See more: bigframes.operations.strings.StringMethods.zfill

bigframes.operations.structs.StructAccessor.explode

explode() -> bigframes.dataframe.DataFrame

Extract all child fields of a struct as a DataFrame.

See more: bigframes.operations.structs.StructAccessor.explode

bigframes.operations.structs.StructAccessor.field

field(name_or_index: str | int) -> bigframes.series.Series

Extract a child field of a struct as a Series.

See more: bigframes.operations.structs.StructAccessor.field

bigframes.operations.structs.StructFrameAccessor.explode

explode(column, *, separator: str = ".") -> bigframes.dataframe.DataFrame

Extract all child fields of struct column(s) and add to the DataFrame.

See more: bigframes.operations.structs.StructFrameAccessor.explode

bigframes.pandas.ArrowDtype.__from_arrow__

__from_arrow__(array: pyarrow.lib.Array | pyarrow.lib.ChunkedArray)

Construct IntegerArray/FloatingArray from pyarrow Array/ChunkedArray.

See more: bigframes.pandas.ArrowDtype.from_arrow

bigframes.pandas.ArrowDtype.construct_array_type

construct_array_type() -> type_t[ArrowExtensionArray]

Return the array type associated with this dtype.

See more: bigframes.pandas.ArrowDtype.construct_array_type

bigframes.pandas.ArrowDtype.construct_from_string

construct_from_string(string: str) -> pandas.core.dtypes.dtypes.ArrowDtype

Construct this type from a string.

See more: bigframes.pandas.ArrowDtype.construct_from_string

bigframes.pandas.BooleanDtype.__from_arrow__

__from_arrow__(array: pyarrow.Array | pyarrow.ChunkedArray) -> BooleanArray

Construct BooleanArray from pyarrow Array/ChunkedArray.

See more: bigframes.pandas.BooleanDtype.from_arrow

bigframes.pandas.BooleanDtype.construct_array_type

construct_array_type() -> type_t[BooleanArray]

Return the array type associated with this dtype.

See more: bigframes.pandas.BooleanDtype.construct_array_type

bigframes.pandas.DataFrame.__abs__

__abs__() -> bigframes.dataframe.DataFrame

Return the absolute value of the argument.

See more: bigframes.pandas.DataFrame.abs

bigframes.pandas.DataFrame.__add__

__add__(other) -> bigframes.dataframe.DataFrame

Get addition of DataFrame and other, column-wise, using arithmetic operator +.

See more: bigframes.pandas.DataFrame.add

bigframes.pandas.DataFrame.__and__

__and__( other: bool | int | bigframes.series.Series, ) -> bigframes.dataframe.DataFrame

Get bitwise AND of DataFrame and other, element-wise, using operator &.

See more: bigframes.pandas.DataFrame.and

bigframes.pandas.DataFrame.__array__

__array__(dtype=None, copy: typing.Optional[bool] = None) -> numpy.ndarray

Returns the rows as NumPy array.

See more: bigframes.pandas.DataFrame.array

bigframes.pandas.DataFrame.__array_ufunc__

__array_ufunc__( ufunc: numpy.ufunc, method: str, *inputs, **kwargs ) -> bigframes.dataframe.DataFrame

Used to support numpy ufuncs.

See more: bigframes.pandas.DataFrame.array_ufunc

bigframes.pandas.DataFrame.__eq__

__eq__(other) -> bigframes.dataframe.DataFrame

Check equality of DataFrame and other, element-wise, using logical operator ==.

See more: bigframes.pandas.DataFrame.eq

bigframes.pandas.DataFrame.__floordiv__

__floordiv__(other)

Get integer division of DataFrame by other, using arithmetic operator //.

See more: bigframes.pandas.DataFrame.floordiv

bigframes.pandas.DataFrame.__ge__

__ge__(other) -> bigframes.dataframe.DataFrame

Check whether DataFrame is greater than or equal to other, element-wise, using logical operator >=.

See more: bigframes.pandas.DataFrame.ge

bigframes.pandas.DataFrame.__getitem__

Gets the specified column(s) from the DataFrame.

See more: bigframes.pandas.DataFrame.getitem

bigframes.pandas.DataFrame.__gt__

__gt__(other) -> bigframes.dataframe.DataFrame

Check whether DataFrame is greater than other, element-wise, using logical operator >.

See more: bigframes.pandas.DataFrame.gt

bigframes.pandas.DataFrame.__invert__

__invert__() -> bigframes.dataframe.DataFrame

Returns the bitwise inversion of the DataFrame, element-wise using operator ````.

See more: bigframes.pandas.DataFrame.invert

bigframes.pandas.DataFrame.__le__

__le__(other) -> bigframes.dataframe.DataFrame

Check whether DataFrame is less than or equal to other, element-wise, using logical operator <=.

See more: bigframes.pandas.DataFrame.le

bigframes.pandas.DataFrame.__len__

__len__()

Returns number of rows in the DataFrame, serves len operator.

See more: bigframes.pandas.DataFrame.len

bigframes.pandas.DataFrame.__lt__

__lt__(other) -> bigframes.dataframe.DataFrame

Check whether DataFrame is less than other, element-wise, using logical operator <.

See more: bigframes.pandas.DataFrame.lt

bigframes.pandas.DataFrame.__matmul__

__matmul__(other) -> bigframes.dataframe.DataFrame

Compute the matrix multiplication between the DataFrame and other, using operator @.

See more: bigframes.pandas.DataFrame.matmul

bigframes.pandas.DataFrame.__mod__

__mod__(other)

Get modulo of DataFrame with other, element-wise, using operator %.

See more: bigframes.pandas.DataFrame.mod

bigframes.pandas.DataFrame.__mul__

__mul__(other)

Get multiplication of DataFrame with other, element-wise, using operator *.

See more: bigframes.pandas.DataFrame.mul

bigframes.pandas.DataFrame.__ne__

__ne__(other) -> bigframes.dataframe.DataFrame

Check inequality of DataFrame and other, element-wise, using logical operator !=.

See more: bigframes.pandas.DataFrame.ne

bigframes.pandas.DataFrame.__or__

__or__( other: bool | int | bigframes.series.Series, ) -> bigframes.dataframe.DataFrame

Get bitwise OR of DataFrame and other, element-wise, using operator |.

See more: bigframes.pandas.DataFrame.or

bigframes.pandas.DataFrame.__pow__

__pow__(other)

Get exponentiation of DataFrame with other, element-wise, using operator **.

See more: bigframes.pandas.DataFrame.pow

bigframes.pandas.DataFrame.__radd__

__radd__(other) -> bigframes.dataframe.DataFrame

Get addition of other and DataFrame, element-wise (binary operator +).

See more: bigframes.pandas.DataFrame.radd

bigframes.pandas.DataFrame.__rand__

__rand__( other: bool | int | bigframes.series.Series, ) -> bigframes.dataframe.DataFrame

Get bitwise AND of DataFrame and other, element-wise, using operator &.

See more: bigframes.pandas.DataFrame.rand

bigframes.pandas.DataFrame.__repr__

__repr__() -> str

Converts a DataFrame to a string.

See more: bigframes.pandas.DataFrame.repr

bigframes.pandas.DataFrame.__rfloordiv__

__rfloordiv__(other)

Get integer divison of other by DataFrame.

See more: bigframes.pandas.DataFrame.rfloordiv

bigframes.pandas.DataFrame.__rmod__

__rmod__(other)

Get integer divison of other by DataFrame.

See more: bigframes.pandas.DataFrame.rmod

bigframes.pandas.DataFrame.__rmul__

__rmul__(other)

Get multiplication of DataFrame with other, element-wise, using operator *.

See more: bigframes.pandas.DataFrame.rmul

bigframes.pandas.DataFrame.__ror__

__ror__( other: bool | int | bigframes.series.Series, ) -> bigframes.dataframe.DataFrame

Get bitwise OR of DataFrame and other, element-wise, using operator |.

See more: bigframes.pandas.DataFrame.ror

bigframes.pandas.DataFrame.__rpow__

__rpow__(other)

Get exponentiation of other with DataFrame, element-wise, using operator **.

See more: bigframes.pandas.DataFrame.rpow

bigframes.pandas.DataFrame.__rsub__

__rsub__(other)

Get subtraction of DataFrame from other, element-wise, using operator -.

See more: bigframes.pandas.DataFrame.rsub

bigframes.pandas.DataFrame.__rtruediv__

__rtruediv__(other)

Get division of other by DataFrame, element-wise, using operator /.

See more: bigframes.pandas.DataFrame.rtruediv

bigframes.pandas.DataFrame.__rxor__

__rxor__( other: bool | int | bigframes.series.Series, ) -> bigframes.dataframe.DataFrame

Get bitwise XOR of DataFrame and other, element-wise, using operator ^.

See more: bigframes.pandas.DataFrame.rxor

bigframes.pandas.DataFrame.__setitem__

__setitem__( key: str | list[str] | pandas.Index, value: SingleItemValue | MultiItemValue )

Modify or insert a column into the DataFrame.

See more: bigframes.pandas.DataFrame.setitem

bigframes.pandas.DataFrame.__sub__

__sub__(other)

Get subtraction of other from DataFrame, element-wise, using operator -.

See more: bigframes.pandas.DataFrame.sub

bigframes.pandas.DataFrame.__truediv__

__truediv__(other)

Get division of DataFrame by other, element-wise, using operator /.

See more: bigframes.pandas.DataFrame.truediv

bigframes.pandas.DataFrame.__xor__

__xor__( other: bool | int | bigframes.series.Series, ) -> bigframes.dataframe.DataFrame

Get bitwise XOR of DataFrame and other, element-wise, using operator ^.

See more: bigframes.pandas.DataFrame.xor

bigframes.pandas.DataFrame.abs

abs() -> bigframes.dataframe.DataFrame

Return a Series/DataFrame with absolute numeric value of each element.

See more: bigframes.pandas.DataFrame.abs

bigframes.pandas.DataFrame.add

add( other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame, axis: str | int = "columns", ) -> bigframes.dataframe.DataFrame

Get addition of DataFrame and other, element-wise (binary operator +).

See more: bigframes.pandas.DataFrame.add

bigframes.pandas.DataFrame.add_prefix

add_prefix( prefix: str, axis: int | str | None = None ) -> bigframes.dataframe.DataFrame

Prefix labels with string prefix.

See more: bigframes.pandas.DataFrame.add_prefix

bigframes.pandas.DataFrame.add_suffix

add_suffix( suffix: str, axis: int | str | None = None ) -> bigframes.dataframe.DataFrame

Suffix labels with string suffix.

See more: bigframes.pandas.DataFrame.add_suffix

bigframes.pandas.DataFrame.agg

agg(func) -> bigframes.dataframe.DataFrame | bigframes.series.Series

Aggregate using one or more operations over columns.

See more: bigframes.pandas.DataFrame.agg

bigframes.pandas.DataFrame.aggregate

aggregate(func) -> bigframes.dataframe.DataFrame | bigframes.series.Series

Aggregate using one or more operations over columns.

See more: bigframes.pandas.DataFrame.aggregate

bigframes.pandas.DataFrame.align

align( other: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], join: str = "outer", axis: typing.Optional[typing.Union[str, int]] = None, ) -> typing.Tuple[ typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], ]

Align two objects on their axes with the specified join method.

See more: bigframes.pandas.DataFrame.align

bigframes.pandas.DataFrame.all

all( axis: typing.Union[str, int] = 0, *, bool_only: bool = False ) -> bigframes.series.Series

Return whether all elements are True, potentially over an axis.

See more: bigframes.pandas.DataFrame.all

bigframes.pandas.DataFrame.any

any( *, axis: typing.Union[str, int] = 0, bool_only: bool = False ) -> bigframes.series.Series

Return whether any element is True, potentially over an axis.

See more: bigframes.pandas.DataFrame.any

bigframes.pandas.DataFrame.apply

apply(func, *, axis=0, args: typing.Tuple = (), **kwargs)

Apply a function along an axis of the DataFrame.

See more: bigframes.pandas.DataFrame.apply

bigframes.pandas.DataFrame.applymap

applymap( func, na_action: typing.Optional[str] = None ) -> bigframes.dataframe.DataFrame

Apply a function to a Dataframe elementwise.

See more: bigframes.pandas.DataFrame.applymap

bigframes.pandas.DataFrame.area

area( x: typing.Optional[typing.Hashable] = None, y: typing.Optional[typing.Hashable] = None, stacked: bool = True, **kwargs )

Draw a stacked area plot.

See more: bigframes.pandas.DataFrame.area

bigframes.pandas.DataFrame.assign

assign(**kwargs) -> bigframes.dataframe.DataFrame

Assign new columns to a DataFrame.

See more: bigframes.pandas.DataFrame.assign

bigframes.pandas.DataFrame.astype

astype( dtype: typing.Union[ typing.Literal[ "boolean", "Float64", "Int64", "int64[pyarrow]", "string", "string[pyarrow]", "timestamp[us, tz=UTC][pyarrow]", "timestamp[us][pyarrow]", "date32[day][pyarrow]", "time64[us][pyarrow]", "decimal128(38, 9)[pyarrow]", "decimal256(76, 38)[pyarrow]", "binary[pyarrow]", "duration[us][pyarrow]", ], pandas.core.arrays.boolean.BooleanDtype, pandas.core.arrays.floating.Float64Dtype, pandas.core.arrays.integer.Int64Dtype, pandas.core.arrays.string_.StringDtype, pandas.core.dtypes.dtypes.ArrowDtype, geopandas.array.GeometryDtype, type, dict[ str, typing.Union[ typing.Literal[ "boolean", "Float64", "Int64", "int64[pyarrow]", "string", "string[pyarrow]", "timestamp[us, tz=UTC][pyarrow]", "timestamp[us][pyarrow]", "date32[day][pyarrow]", "time64[us][pyarrow]", "decimal128(38, 9)[pyarrow]", "decimal256(76, 38)[pyarrow]", "binary[pyarrow]", "duration[us][pyarrow]", ], pandas.core.arrays.boolean.BooleanDtype, pandas.core.arrays.floating.Float64Dtype, pandas.core.arrays.integer.Int64Dtype, pandas.core.arrays.string_.StringDtype, pandas.core.dtypes.dtypes.ArrowDtype, geopandas.array.GeometryDtype, ], ], ], *, errors: typing.Literal["raise", "null"] = "raise" ) -> bigframes.dataframe.DataFrame

Cast a pandas object to a specified dtype dtype.

See more: bigframes.pandas.DataFrame.astype

bigframes.pandas.DataFrame.bar

bar( x: typing.Optional[typing.Hashable] = None, y: typing.Optional[typing.Hashable] = None, **kwargs )

Draw a vertical bar plot.

See more: bigframes.pandas.DataFrame.bar

bigframes.pandas.DataFrame.bfill

bfill(*, limit: typing.Optional[int] = None) -> bigframes.dataframe.DataFrame

Fill NA/NaN values by using the next valid observation to fill the gap.

See more: bigframes.pandas.DataFrame.bfill

bigframes.pandas.DataFrame.cache

cache()

Materializes the DataFrame to a temporary table.

See more: bigframes.pandas.DataFrame.cache

bigframes.pandas.DataFrame.combine

combine( other: bigframes.dataframe.DataFrame, func: typing.Callable[ [bigframes.series.Series, bigframes.series.Series], bigframes.series.Series ], fill_value=None, overwrite: bool = True, *, how: str = "outer" ) -> bigframes.dataframe.DataFrame

Perform column-wise combine with another DataFrame.

See more: bigframes.pandas.DataFrame.combine

bigframes.pandas.DataFrame.combine_first

combine_first(other: bigframes.dataframe.DataFrame)

Update null elements with value in the same location in other.

See more: bigframes.pandas.DataFrame.combine_first

bigframes.pandas.DataFrame.copy

copy() -> bigframes.dataframe.DataFrame

Make a copy of this object's indices and data.

See more: bigframes.pandas.DataFrame.copy

bigframes.pandas.DataFrame.corr

corr( method="pearson", min_periods=None, numeric_only=False ) -> bigframes.dataframe.DataFrame

Compute pairwise correlation of columns, excluding NA/null values.

See more: bigframes.pandas.DataFrame.corr

bigframes.pandas.DataFrame.corrwith

corrwith( other: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], *, numeric_only: bool = False )

Compute pairwise correlation.

See more: bigframes.pandas.DataFrame.corrwith

bigframes.pandas.DataFrame.count

count(*, numeric_only: bool = False) -> bigframes.series.Series

Count non-NA cells for each column.

See more: bigframes.pandas.DataFrame.count

bigframes.pandas.DataFrame.cov

cov(*, numeric_only: bool = False) -> bigframes.dataframe.DataFrame

Compute pairwise covariance of columns, excluding NA/null values.

See more: bigframes.pandas.DataFrame.cov

bigframes.pandas.DataFrame.cummax

cummax() -> bigframes.dataframe.DataFrame

Return cumulative maximum over columns.

See more: bigframes.pandas.DataFrame.cummax

bigframes.pandas.DataFrame.cummin

cummin() -> bigframes.dataframe.DataFrame

Return cumulative minimum over columns.

See more: bigframes.pandas.DataFrame.cummin

bigframes.pandas.DataFrame.cumprod

cumprod() -> bigframes.dataframe.DataFrame

Return cumulative product over columns.

See more: bigframes.pandas.DataFrame.cumprod

bigframes.pandas.DataFrame.cumsum

cumsum()

Return cumulative sum over columns.

See more: bigframes.pandas.DataFrame.cumsum

bigframes.pandas.DataFrame.describe

describe( include: typing.Union[None, typing.Literal["all"]] = None, ) -> bigframes.dataframe.DataFrame

Generate descriptive statistics.

See more: bigframes.pandas.DataFrame.describe

bigframes.pandas.DataFrame.diff

diff(periods: int = 1) -> bigframes.dataframe.DataFrame

First discrete difference of element.

See more: bigframes.pandas.DataFrame.diff

bigframes.pandas.DataFrame.div

div( other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame, axis: str | int = "columns", ) -> bigframes.dataframe.DataFrame

Get floating division of DataFrame and other, element-wise (binary operator /).

See more: bigframes.pandas.DataFrame.div

bigframes.pandas.DataFrame.divide

divide( other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame, axis: str | int = "columns", ) -> bigframes.dataframe.DataFrame

Get floating division of DataFrame and other, element-wise (binary operator /).

See more: bigframes.pandas.DataFrame.divide

bigframes.pandas.DataFrame.dot

dot(other: _DataFrameOrSeries) -> _DataFrameOrSeries

Compute the matrix multiplication between the DataFrame and other.

See more: bigframes.pandas.DataFrame.dot

bigframes.pandas.DataFrame.drop

Drop specified labels from columns.

See more: bigframes.pandas.DataFrame.drop

bigframes.pandas.DataFrame.drop_duplicates

drop_duplicates( subset: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] = None, *, keep: str = "first" ) -> bigframes.dataframe.DataFrame

Return DataFrame with duplicate rows removed.

See more: bigframes.pandas.DataFrame.drop_duplicates

bigframes.pandas.DataFrame.droplevel

droplevel( level: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]], axis: int | str = 0, )

Return DataFrame with requested index / column level(s) removed.

See more: bigframes.pandas.DataFrame.droplevel

bigframes.pandas.DataFrame.dropna

dropna( *, axis: int | str = 0, how: str = "any", thresh: typing.Optional[int] = None, subset: typing.Union[ None, typing.Hashable, typing.Sequence[typing.Hashable] ] = None, inplace: bool = False, ignore_index=False ) -> bigframes.dataframe.DataFrame

Remove missing values.

See more: bigframes.pandas.DataFrame.dropna

bigframes.pandas.DataFrame.duplicated

duplicated(subset=None, keep: str = "first") -> bigframes.series.Series

Return boolean Series denoting duplicate rows.

See more: bigframes.pandas.DataFrame.duplicated

bigframes.pandas.DataFrame.eq

eq(other: typing.Any, axis: str | int = "columns") -> bigframes.dataframe.DataFrame

Get equal to of DataFrame and other, element-wise (binary operator eq).

See more: bigframes.pandas.DataFrame.eq

bigframes.pandas.DataFrame.equals

equals( other: typing.Union[bigframes.series.Series, bigframes.dataframe.DataFrame], ) -> bool

Test whether two objects contain the same elements.

See more: bigframes.pandas.DataFrame.equals

bigframes.pandas.DataFrame.eval

eval(expr: str) -> bigframes.dataframe.DataFrame

Evaluate a string describing operations on DataFrame columns.

See more: bigframes.pandas.DataFrame.eval

bigframes.pandas.DataFrame.expanding

expanding(min_periods: int = 1) -> bigframes.core.window.rolling.Window

Provide expanding window calculations.

See more: bigframes.pandas.DataFrame.expanding

bigframes.pandas.DataFrame.explode

explode( column: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]], *, ignore_index: typing.Optional[bool] = False ) -> bigframes.dataframe.DataFrame

Transform each element of an array to a row, replicating index values.

See more: bigframes.pandas.DataFrame.explode

bigframes.pandas.DataFrame.ffill

ffill(*, limit: typing.Optional[int] = None) -> bigframes.dataframe.DataFrame

Fill NA/NaN values by propagating the last valid observation to next valid.

See more: bigframes.pandas.DataFrame.ffill

bigframes.pandas.DataFrame.fillna

fillna(value=None) -> bigframes.dataframe.DataFrame

Fill NA (NULL in BigQuery) values using the specified method.

See more: bigframes.pandas.DataFrame.fillna

bigframes.pandas.DataFrame.filter

filter( items: typing.Optional[typing.Iterable] = None, like: typing.Optional[str] = None, regex: typing.Optional[str] = None, axis: int | str | None = None, ) -> bigframes.dataframe.DataFrame

Subset the dataframe rows or columns according to the specified index labels.

See more: bigframes.pandas.DataFrame.filter

bigframes.pandas.DataFrame.first_valid_index

first_valid_index()

API documentation for first_valid_index method.

See more: bigframes.pandas.DataFrame.first_valid_index

bigframes.pandas.DataFrame.floordiv

floordiv( other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame, axis: str | int = "columns", ) -> bigframes.dataframe.DataFrame

Get integer division of DataFrame and other, element-wise (binary operator //).

See more: bigframes.pandas.DataFrame.floordiv

bigframes.pandas.DataFrame.from_dict

from_dict( data: dict, orient: str = "columns", dtype=None, columns=None ) -> bigframes.dataframe.DataFrame

Construct DataFrame from dict of array-like or dicts.

See more: bigframes.pandas.DataFrame.from_dict

bigframes.pandas.DataFrame.from_records

from_records( data, index=None, exclude=None, columns=None, coerce_float: bool = False, nrows: typing.Optional[int] = None, ) -> bigframes.dataframe.DataFrame

Convert structured or record ndarray to DataFrame.

See more: bigframes.pandas.DataFrame.from_records

bigframes.pandas.DataFrame.ge

ge(other: typing.Any, axis: str | int = "columns") -> bigframes.dataframe.DataFrame

Get 'greater than or equal to' of DataFrame and other, element-wise (binary operator >=).

See more: bigframes.pandas.DataFrame.ge

bigframes.pandas.DataFrame.groupby

groupby( by: typing.Optional[ typing.Union[ typing.Hashable, bigframes.series.Series, typing.Sequence[typing.Union[typing.Hashable, bigframes.series.Series]], ] ] = None, *, level: typing.Optional[ typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] ] = None, as_index: bool = True, dropna: bool = True ) -> bigframes.core.groupby.dataframe_group_by.DataFrameGroupBy

Group DataFrame by columns.

See more: bigframes.pandas.DataFrame.groupby

bigframes.pandas.DataFrame.gt

gt(other: typing.Any, axis: str | int = "columns") -> bigframes.dataframe.DataFrame

Get 'greater than' of DataFrame and other, element-wise (binary operator >).

See more: bigframes.pandas.DataFrame.gt

bigframes.pandas.DataFrame.head

head(n: int = 5) -> bigframes.dataframe.DataFrame

Return the first n rows.

See more: bigframes.pandas.DataFrame.head

bigframes.pandas.DataFrame.hist

hist(by: typing.Optional[typing.Sequence[str]] = None, bins: int = 10, **kwargs)

Draw one histogram of the DataFrame’s columns.

See more: bigframes.pandas.DataFrame.hist

bigframes.pandas.DataFrame.idxmax

idxmax() -> bigframes.series.Series

Return index of first occurrence of maximum over columns.

See more: bigframes.pandas.DataFrame.idxmax

bigframes.pandas.DataFrame.idxmin

idxmin() -> bigframes.series.Series

Return index of first occurrence of minimum over columns.

See more: bigframes.pandas.DataFrame.idxmin

bigframes.pandas.DataFrame.info

info( verbose: typing.Optional[bool] = None, buf=None, max_cols: typing.Optional[int] = None, memory_usage: typing.Optional[bool] = None, show_counts: typing.Optional[bool] = None, )

Print a concise summary of a DataFrame.

See more: bigframes.pandas.DataFrame.info

bigframes.pandas.DataFrame.insert

insert( loc: int, column: blocks.Label, value: SingleItemValue, allow_duplicates: bool = False, )

Insert column into DataFrame at specified location.

See more: bigframes.pandas.DataFrame.insert

bigframes.pandas.DataFrame.interpolate

interpolate(method: str = "linear") -> bigframes.dataframe.DataFrame

Fill NA (NULL in BigQuery) values using an interpolation method.

See more: bigframes.pandas.DataFrame.interpolate

bigframes.pandas.DataFrame.isin

isin(values) -> bigframes.dataframe.DataFrame

Whether each element in the DataFrame is contained in values.

See more: bigframes.pandas.DataFrame.isin

bigframes.pandas.DataFrame.isna

isna() -> bigframes.dataframe.DataFrame

Detect missing (NULL) values.

See more: bigframes.pandas.DataFrame.isna

bigframes.pandas.DataFrame.isnull

isnull() -> bigframes.dataframe.DataFrame

Detect missing (NULL) values.

See more: bigframes.pandas.DataFrame.isnull

bigframes.pandas.DataFrame.items

items()

Iterate over (column name, Series) pairs.

See more: bigframes.pandas.DataFrame.items

bigframes.pandas.DataFrame.iterrows

iterrows() -> typing.Iterable[tuple[typing.Any, pandas.core.series.Series]]

Iterate over DataFrame rows as (index, Series) pairs.

See more: bigframes.pandas.DataFrame.iterrows

bigframes.pandas.DataFrame.itertuples

itertuples( index: bool = True, name: typing.Optional[str] = "Pandas" ) -> typing.Iterable[tuple[typing.Any, ...]]

Iterate over DataFrame rows as namedtuples.

See more: bigframes.pandas.DataFrame.itertuples

bigframes.pandas.DataFrame.join

join( other: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], on: typing.Optional[str] = None, how: str = "left", lsuffix: str = "", rsuffix: str = "", ) -> bigframes.dataframe.DataFrame

Join columns of another DataFrame.

See more: bigframes.pandas.DataFrame.join

bigframes.pandas.DataFrame.keys

keys() -> pandas.core.indexes.base.Index

Get the 'info axis'.

See more: bigframes.pandas.DataFrame.keys

bigframes.pandas.DataFrame.kurt

kurt(*, numeric_only: bool = False)

Return unbiased kurtosis over columns.

See more: bigframes.pandas.DataFrame.kurt

bigframes.pandas.DataFrame.kurtosis

kurtosis(*, numeric_only: bool = False)

Return unbiased kurtosis over columns.

See more: bigframes.pandas.DataFrame.kurtosis

bigframes.pandas.DataFrame.le

le(other: typing.Any, axis: str | int = "columns") -> bigframes.dataframe.DataFrame

Get 'less than or equal to' of dataframe and other, element-wise (binary operator <=).

See more: bigframes.pandas.DataFrame.le

bigframes.pandas.DataFrame.line

line( x: typing.Optional[typing.Hashable] = None, y: typing.Optional[typing.Hashable] = None, **kwargs )

Plot Series or DataFrame as lines.

See more: bigframes.pandas.DataFrame.line

bigframes.pandas.DataFrame.lt

lt(other: typing.Any, axis: str | int = "columns") -> bigframes.dataframe.DataFrame

Get 'less than' of DataFrame and other, element-wise (binary operator <).

See more: bigframes.pandas.DataFrame.lt

bigframes.pandas.DataFrame.map

map(func, na_action: typing.Optional[str] = None) -> bigframes.dataframe.DataFrame

Apply a function to a Dataframe elementwise.

See more: bigframes.pandas.DataFrame.map

bigframes.pandas.DataFrame.mask

mask(cond, other=None)

Replace values where the condition is False.

See more: bigframes.pandas.DataFrame.mask

bigframes.pandas.DataFrame.max

max( axis: typing.Union[str, int] = 0, *, numeric_only: bool = False ) -> bigframes.series.Series

Return the maximum of the values over the requested axis.

See more: bigframes.pandas.DataFrame.max

bigframes.pandas.DataFrame.mean

mean( axis: typing.Union[str, int] = 0, *, numeric_only: bool = False ) -> bigframes.series.Series

Return the mean of the values over the requested axis.

See more: bigframes.pandas.DataFrame.mean

bigframes.pandas.DataFrame.median

median( *, numeric_only: bool = False, exact: bool = True ) -> bigframes.series.Series

Return the median of the values over colunms.

See more: bigframes.pandas.DataFrame.median

bigframes.pandas.DataFrame.melt

melt( id_vars: typing.Optional[typing.Iterable[typing.Hashable]] = None, value_vars: typing.Optional[typing.Iterable[typing.Hashable]] = None, var_name: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] = None, value_name: typing.Hashable = "value", )

Unpivot a DataFrame from wide to long format, optionally leaving identifiers set.

See more: bigframes.pandas.DataFrame.melt

bigframes.pandas.DataFrame.memory_usage

memory_usage(index: bool = True)

Return the memory usage of each column in bytes.

See more: bigframes.pandas.DataFrame.memory_usage

bigframes.pandas.DataFrame.merge

merge( right: bigframes.dataframe.DataFrame, how: typing.Literal["inner", "left", "outer", "right", "cross"] = "inner", on: typing.Optional[ typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] ] = None, *, left_on: typing.Optional[ typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] ] = None, right_on: typing.Optional[ typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] ] = None, left_index: bool = False, right_index: bool = False, sort: bool = False, suffixes: tuple[str, str] = ("_x", "_y") ) -> bigframes.dataframe.DataFrame

Merge DataFrame objects with a database-style join.

See more: bigframes.pandas.DataFrame.merge

bigframes.pandas.DataFrame.min

min( axis: typing.Union[str, int] = 0, *, numeric_only: bool = False ) -> bigframes.series.Series

Return the minimum of the values over the requested axis.

See more: bigframes.pandas.DataFrame.min

bigframes.pandas.DataFrame.mod

mod( other: int | bigframes.series.Series | bigframes.dataframe.DataFrame, axis: str | int = "columns", ) -> bigframes.dataframe.DataFrame

Get modulo of DataFrame and other, element-wise (binary operator %).

See more: bigframes.pandas.DataFrame.mod

bigframes.pandas.DataFrame.mul

mul( other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame, axis: str | int = "columns", ) -> bigframes.dataframe.DataFrame

Get multiplication of DataFrame and other, element-wise (binary operator *).

See more: bigframes.pandas.DataFrame.mul

bigframes.pandas.DataFrame.multiply

multiply( other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame, axis: str | int = "columns", ) -> bigframes.dataframe.DataFrame

Get multiplication of DataFrame and other, element-wise (binary operator *).

See more: bigframes.pandas.DataFrame.multiply

bigframes.pandas.DataFrame.ne

ne(other: typing.Any, axis: str | int = "columns") -> bigframes.dataframe.DataFrame

Get not equal to of DataFrame and other, element-wise (binary operator ne).

See more: bigframes.pandas.DataFrame.ne

bigframes.pandas.DataFrame.nlargest

nlargest( n: int, columns: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]], keep: str = "first", ) -> bigframes.dataframe.DataFrame

Return the first n rows ordered by columns in descending order.

See more: bigframes.pandas.DataFrame.nlargest

bigframes.pandas.DataFrame.notna

notna() -> bigframes.dataframe.DataFrame

Detect existing (non-missing) values.

See more: bigframes.pandas.DataFrame.notna

bigframes.pandas.DataFrame.notnull

notnull() -> bigframes.dataframe.DataFrame

Detect existing (non-missing) values.

See more: bigframes.pandas.DataFrame.notnull

bigframes.pandas.DataFrame.nsmallest

nsmallest( n: int, columns: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]], keep: str = "first", ) -> bigframes.dataframe.DataFrame

Return the first n rows ordered by columns in ascending order.

See more: bigframes.pandas.DataFrame.nsmallest

bigframes.pandas.DataFrame.nunique

nunique() -> bigframes.series.Series

Count number of distinct elements in each column.

See more: bigframes.pandas.DataFrame.nunique

bigframes.pandas.DataFrame.pct_change

pct_change(periods: int = 1) -> bigframes.dataframe.DataFrame

Fractional change between the current and a prior element.

See more: bigframes.pandas.DataFrame.pct_change

bigframes.pandas.DataFrame.peek

peek( n: int = 5, *, force: bool = True, allow_large_results=None ) -> pandas.core.frame.DataFrame

Preview n arbitrary rows from the dataframe.

See more: bigframes.pandas.DataFrame.peek

bigframes.pandas.DataFrame.pivot

pivot( *, columns: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]], index: typing.Optional[ typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] ] = None, values: typing.Optional[ typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] ] = None ) -> bigframes.dataframe.DataFrame

Return reshaped DataFrame organized by given index / column values.

See more: bigframes.pandas.DataFrame.pivot

bigframes.pandas.DataFrame.pivot_table

pivot_table( values: typing.Optional[ typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] ] = None, index: typing.Optional[ typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] ] = None, columns: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] = None, aggfunc: str = "mean", ) -> bigframes.dataframe.DataFrame

Create a spreadsheet-style pivot table as a DataFrame.

See more: bigframes.pandas.DataFrame.pivot_table

bigframes.pandas.DataFrame.pow

pow( other: int | bigframes.series.Series, axis: str | int = "columns" ) -> bigframes.dataframe.DataFrame

Get Exponential power of dataframe and other, element-wise (binary operator **).

See more: bigframes.pandas.DataFrame.pow

bigframes.pandas.DataFrame.prod

prod( axis: typing.Union[str, int] = 0, *, numeric_only: bool = False ) -> bigframes.series.Series

Return the product of the values over the requested axis.

See more: bigframes.pandas.DataFrame.prod

bigframes.pandas.DataFrame.product

product( axis: typing.Union[str, int] = 0, *, numeric_only: bool = False ) -> bigframes.series.Series

Return the product of the values over the requested axis.

See more: bigframes.pandas.DataFrame.product

bigframes.pandas.DataFrame.quantile

quantile( q: typing.Union[float, typing.Sequence[float]] = 0.5, *, numeric_only: bool = False )

Return values at the given quantile over requested axis.

See more: bigframes.pandas.DataFrame.quantile

bigframes.pandas.DataFrame.query

query(expr: str) -> bigframes.dataframe.DataFrame

Query the columns of a DataFrame with a boolean expression.

See more: bigframes.pandas.DataFrame.query

bigframes.pandas.DataFrame.radd

radd( other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame, axis: str | int = "columns", ) -> bigframes.dataframe.DataFrame

Get addition of DataFrame and other, element-wise (binary operator +).

See more: bigframes.pandas.DataFrame.radd

bigframes.pandas.DataFrame.rank

rank( axis=0, method: str = "average", numeric_only=False, na_option: str = "keep", ascending=True, pct: bool = False, ) -> bigframes.dataframe.DataFrame

Compute numerical data ranks (1 through n) along axis.

See more: bigframes.pandas.DataFrame.rank

bigframes.pandas.DataFrame.rdiv

rdiv( other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame, axis: str | int = "columns", ) -> bigframes.dataframe.DataFrame

Get floating division of DataFrame and other, element-wise (binary operator /).

See more: bigframes.pandas.DataFrame.rdiv

bigframes.pandas.DataFrame.reindex

reindex( labels=None, *, index=None, columns=None, axis: typing.Optional[typing.Union[str, int]] = None, validate: typing.Optional[bool] = None )

Conform DataFrame to new index with optional filling logic.

See more: bigframes.pandas.DataFrame.reindex

bigframes.pandas.DataFrame.reindex_like

reindex_like( other: bigframes.dataframe.DataFrame, *, validate: typing.Optional[bool] = None )

Return an object with matching indices as other object.

See more: bigframes.pandas.DataFrame.reindex_like

bigframes.pandas.DataFrame.rename

Rename columns.

See more: bigframes.pandas.DataFrame.rename

bigframes.pandas.DataFrame.rename_axis

Set the name of the axis for the index.

See more: bigframes.pandas.DataFrame.rename_axis

bigframes.pandas.DataFrame.reorder_levels

reorder_levels( order: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]], axis: int | str = 0, )

Rearrange index levels using input order.

See more: bigframes.pandas.DataFrame.reorder_levels

bigframes.pandas.DataFrame.replace

replace(to_replace: typing.Any, value: typing.Any = None, *, regex: bool = False)

Replace values given in to_replace with value.

See more: bigframes.pandas.DataFrame.replace

bigframes.pandas.DataFrame.resample

resample( rule: str, *, closed: typing.Optional[typing.Literal["right", "left"]] = None, label: typing.Optional[typing.Literal["right", "left"]] = None, on: typing.Hashable = None, level: typing.Optional[ typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] ] = None, origin: typing.Union[ pandas._libs.tslibs.timestamps.Timestamp, datetime.datetime, numpy.datetime64, int, float, str, typing.Literal["epoch", "start", "start_day", "end", "end_day"], ] = "start_day" ) -> bigframes.core.groupby.dataframe_group_by.DataFrameGroupBy

Resample time-series data.

See more: bigframes.pandas.DataFrame.resample

bigframes.pandas.DataFrame.reset_index

Reset the index.

See more: bigframes.pandas.DataFrame.reset_index

bigframes.pandas.DataFrame.rfloordiv

rfloordiv( other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame, axis: str | int = "columns", ) -> bigframes.dataframe.DataFrame

Get integer division of DataFrame and other, element-wise (binary operator //).

See more: bigframes.pandas.DataFrame.rfloordiv

bigframes.pandas.DataFrame.rmod

rmod( other: int | bigframes.series.Series | bigframes.dataframe.DataFrame, axis: str | int = "columns", ) -> bigframes.dataframe.DataFrame

Get modulo of DataFrame and other, element-wise (binary operator %).

See more: bigframes.pandas.DataFrame.rmod

bigframes.pandas.DataFrame.rmul

rmul( other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame, axis: str | int = "columns", ) -> bigframes.dataframe.DataFrame

Get multiplication of DataFrame and other, element-wise (binary operator *).

See more: bigframes.pandas.DataFrame.rmul

bigframes.pandas.DataFrame.rolling

rolling( window: ( int | pandas._libs.tslibs.timedeltas.Timedelta | numpy.timedelta64 | datetime.timedelta | str ), min_periods=None, on: str | None = None, closed: typing.Literal["right", "left", "both", "neither"] = "right", ) -> bigframes.core.window.rolling.Window

Provide rolling window calculations.

See more: bigframes.pandas.DataFrame.rolling

bigframes.pandas.DataFrame.round

round( decimals: typing.Union[int, dict[typing.Hashable, int]] = 0, ) -> bigframes.dataframe.DataFrame

Round a DataFrame to a variable number of decimal places.

See more: bigframes.pandas.DataFrame.round

bigframes.pandas.DataFrame.rpow

rpow( other: int | bigframes.series.Series, axis: str | int = "columns" ) -> bigframes.dataframe.DataFrame

Get Exponential power of dataframe and other, element-wise (binary operator rpow).

See more: bigframes.pandas.DataFrame.rpow

bigframes.pandas.DataFrame.rsub

rsub( other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame, axis: str | int = "columns", ) -> bigframes.dataframe.DataFrame

Get subtraction of DataFrame and other, element-wise (binary operator -).

See more: bigframes.pandas.DataFrame.rsub

bigframes.pandas.DataFrame.rtruediv

rtruediv( other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame, axis: str | int = "columns", ) -> bigframes.dataframe.DataFrame

Get floating division of DataFrame and other, element-wise (binary operator /).

See more: bigframes.pandas.DataFrame.rtruediv

bigframes.pandas.DataFrame.sample

sample( n: typing.Optional[int] = None, frac: typing.Optional[float] = None, *, random_state: typing.Optional[int] = None, sort: typing.Optional[typing.Union[bool, typing.Literal["random"]]] = "random" ) -> bigframes.dataframe.DataFrame

Return a random sample of items from an axis of object.

See more: bigframes.pandas.DataFrame.sample

bigframes.pandas.DataFrame.scatter

scatter( x: typing.Optional[typing.Hashable] = None, y: typing.Optional[typing.Hashable] = None, s: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] = None, c: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] = None, **kwargs )

Create a scatter plot with varying marker point size and color.

See more: bigframes.pandas.DataFrame.scatter

bigframes.pandas.DataFrame.select_dtypes

select_dtypes(include=None, exclude=None) -> bigframes.dataframe.DataFrame

Return a subset of the DataFrame's columns based on the column dtypes.

See more: bigframes.pandas.DataFrame.select_dtypes

bigframes.pandas.DataFrame.set_index

set_index( keys: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]], append: bool = False, drop: bool = True, ) -> bigframes.dataframe.DataFrame

Set the DataFrame index using existing columns.

See more: bigframes.pandas.DataFrame.set_index

bigframes.pandas.DataFrame.shift

shift(periods: int = 1) -> bigframes.dataframe.DataFrame

Shift index by desired number of periods.

See more: bigframes.pandas.DataFrame.shift

bigframes.pandas.DataFrame.skew

skew(*, numeric_only: bool = False)

Return unbiased skew over columns.

See more: bigframes.pandas.DataFrame.skew

bigframes.pandas.DataFrame.sort_index

Sort object by labels (along an axis).

See more: bigframes.pandas.DataFrame.sort_index

bigframes.pandas.DataFrame.sort_values

Sort by the values along row axis.

See more: bigframes.pandas.DataFrame.sort_values

bigframes.pandas.DataFrame.stack

stack(level: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] = -1)

Stack the prescribed level(s) from columns to index.

See more: bigframes.pandas.DataFrame.stack

bigframes.pandas.DataFrame.std

std( axis: typing.Union[str, int] = 0, *, numeric_only: bool = False ) -> bigframes.series.Series

Return sample standard deviation over columns.

See more: bigframes.pandas.DataFrame.std

bigframes.pandas.DataFrame.sub

sub( other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame, axis: str | int = "columns", ) -> bigframes.dataframe.DataFrame

Get subtraction of DataFrame and other, element-wise (binary operator -).

See more: bigframes.pandas.DataFrame.sub

bigframes.pandas.DataFrame.subtract

subtract( other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame, axis: str | int = "columns", ) -> bigframes.dataframe.DataFrame

Get subtraction of DataFrame and other, element-wise (binary operator -).

See more: bigframes.pandas.DataFrame.subtract

bigframes.pandas.DataFrame.sum

sum( axis: typing.Union[str, int] = 0, *, numeric_only: bool = False ) -> bigframes.series.Series

Return the sum of the values over the requested axis.

See more: bigframes.pandas.DataFrame.sum

bigframes.pandas.DataFrame.swaplevel

swaplevel(i: int = -2, j: int = -1, axis: int | str = 0)

Swap levels i and j in a MultiIndex.

See more: bigframes.pandas.DataFrame.swaplevel

bigframes.pandas.DataFrame.tail

tail(n: int = 5) -> bigframes.dataframe.DataFrame

Return the last n rows.

See more: bigframes.pandas.DataFrame.tail

bigframes.pandas.DataFrame.take

take( indices: typing.Sequence[int], axis: int | str | None = 0, **kwargs ) -> bigframes.dataframe.DataFrame

Return the elements in the given positional indices along an axis.

See more: bigframes.pandas.DataFrame.take

bigframes.pandas.DataFrame.to_arrow

to_arrow( *, ordered: bool = True, allow_large_results: typing.Optional[bool] = None ) -> pyarrow.lib.Table

Write DataFrame to an Arrow table / record batch.

See more: bigframes.pandas.DataFrame.to_arrow

bigframes.pandas.DataFrame.to_csv

to_csv( path_or_buf=None, sep=",", *, header: bool = True, index: bool = True, allow_large_results: typing.Optional[bool] = None ) -> typing.Optional[str]

Write object to a comma-separated values (csv) file on Cloud Storage.

See more: bigframes.pandas.DataFrame.to_csv

bigframes.pandas.DataFrame.to_dict

to_dict( orient: typing.Literal[ "dict", "list", "series", "split", "tight", "records", "index" ] = "dict", into: type[dict] = dict, *, allow_large_results: typing.Optional[bool] = None, **kwargs ) -> dict | list[dict]

Convert the DataFrame to a dictionary.

See more: bigframes.pandas.DataFrame.to_dict

bigframes.pandas.DataFrame.to_excel

to_excel( excel_writer, sheet_name: str = "Sheet1", *, allow_large_results: typing.Optional[bool] = None, **kwargs ) -> None

Write DataFrame to an Excel sheet.

See more: bigframes.pandas.DataFrame.to_excel

bigframes.pandas.DataFrame.to_gbq

to_gbq( destination_table: typing.Optional[str] = None, *, if_exists: typing.Optional[typing.Literal["fail", "replace", "append"]] = None, index: bool = True, ordering_id: typing.Optional[str] = None, clustering_columns: typing.Union[ pandas.core.indexes.base.Index, typing.Iterable[typing.Hashable] ] = (), labels: dict[str, str] = {} ) -> str

Write a DataFrame to a BigQuery table.

See more: bigframes.pandas.DataFrame.to_gbq

bigframes.pandas.DataFrame.to_html

to_html( buf=None, columns: typing.Optional[typing.Sequence[str]] = None, col_space=None, header: bool = True, index: bool = True, na_rep: str = "NaN", formatters=None, float_format=None, sparsify: bool | None = None, index_names: bool = True, justify: str | None = None, max_rows: int | None = None, max_cols: int | None = None, show_dimensions: bool = False, decimal: str = ".", bold_rows: bool = True, classes: str | list | tuple | None = None, escape: bool = True, notebook: bool = False, border: int | None = None, table_id: str | None = None, render_links: bool = False, encoding: str | None = None, *, allow_large_results: bool | None = None ) -> str

Render a DataFrame as an HTML table.

See more: bigframes.pandas.DataFrame.to_html

bigframes.pandas.DataFrame.to_json

to_json( path_or_buf=None, orient: typing.Optional[ typing.Literal["split", "records", "index", "columns", "values", "table"] ] = None, *, lines: bool = False, index: bool = True, allow_large_results: typing.Optional[bool] = None ) -> typing.Optional[str]

Convert the object to a JSON string, written to Cloud Storage.

See more: bigframes.pandas.DataFrame.to_json

bigframes.pandas.DataFrame.to_latex

to_latex( buf=None, columns: typing.Optional[typing.Sequence] = None, header: typing.Union[bool, typing.Sequence[str]] = True, index: bool = True, *, allow_large_results: typing.Optional[bool] = None, **kwargs ) -> str | None

Render object to a LaTeX tabular, longtable, or nested table.

See more: bigframes.pandas.DataFrame.to_latex

bigframes.pandas.DataFrame.to_markdown

to_markdown( buf=None, mode: str = "wt", index: bool = True, *, allow_large_results: typing.Optional[bool] = None, **kwargs ) -> str | None

Print DataFrame in Markdown-friendly format.

See more: bigframes.pandas.DataFrame.to_markdown

bigframes.pandas.DataFrame.to_numpy

to_numpy( dtype=None, copy=False, na_value=_NoDefault.no_default, *, allow_large_results=None, **kwargs ) -> numpy.ndarray

Convert the DataFrame to a NumPy array.

See more: bigframes.pandas.DataFrame.to_numpy

bigframes.pandas.DataFrame.to_orc

to_orc(path=None, *, allow_large_results=None, **kwargs) -> bytes | None

Write a DataFrame to the ORC format.

See more: bigframes.pandas.DataFrame.to_orc

bigframes.pandas.DataFrame.to_pandas

Write DataFrame to pandas DataFrame.

See more: bigframes.pandas.DataFrame.to_pandas

bigframes.pandas.DataFrame.to_pandas_batches

to_pandas_batches( page_size: typing.Optional[int] = None, max_results: typing.Optional[int] = None, *, allow_large_results: typing.Optional[bool] = None ) -> typing.Iterable[pandas.core.frame.DataFrame]

Stream DataFrame results to an iterable of pandas DataFrame.

See more: bigframes.pandas.DataFrame.to_pandas_batches

bigframes.pandas.DataFrame.to_parquet

to_parquet( path=None, *, compression: typing.Optional[typing.Literal["snappy", "gzip"]] = "snappy", index: bool = True, allow_large_results: typing.Optional[bool] = None ) -> typing.Optional[bytes]

Write a DataFrame to the binary Parquet format.

See more: bigframes.pandas.DataFrame.to_parquet

bigframes.pandas.DataFrame.to_pickle

to_pickle(path, *, allow_large_results=None, **kwargs) -> None

Pickle (serialize) object to file.

See more: bigframes.pandas.DataFrame.to_pickle

bigframes.pandas.DataFrame.to_records

to_records( index: bool = True, column_dtypes=None, index_dtypes=None, *, allow_large_results=None ) -> numpy.rec.recarray

Convert DataFrame to a NumPy record array.

See more: bigframes.pandas.DataFrame.to_records

bigframes.pandas.DataFrame.to_string

to_string( buf=None, columns: typing.Optional[typing.Sequence[str]] = None, col_space=None, header: typing.Union[bool, typing.Sequence[str]] = True, index: bool = True, na_rep: str = "NaN", formatters=None, float_format=None, sparsify: bool | None = None, index_names: bool = True, justify: str | None = None, max_rows: int | None = None, max_cols: int | None = None, show_dimensions: bool = False, decimal: str = ".", line_width: int | None = None, min_rows: int | None = None, max_colwidth: int | None = None, encoding: str | None = None, *, allow_large_results: typing.Optional[bool] = None ) -> str | None

Render a DataFrame to a console-friendly tabular output.

See more: bigframes.pandas.DataFrame.to_string

bigframes.pandas.DataFrame.transpose

transpose() -> bigframes.dataframe.DataFrame

Transpose index and columns.

See more: bigframes.pandas.DataFrame.transpose

bigframes.pandas.DataFrame.truediv

truediv( other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame, axis: str | int = "columns", ) -> bigframes.dataframe.DataFrame

Get floating division of DataFrame and other, element-wise (binary operator /).

See more: bigframes.pandas.DataFrame.truediv

bigframes.pandas.DataFrame.unstack

unstack( level: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] = -1, )

Pivot a level of the (necessarily hierarchical) index labels.

See more: bigframes.pandas.DataFrame.unstack

bigframes.pandas.DataFrame.update

update(other, join: str = "left", overwrite=True, filter_func=None)

Modify in place using non-NA values from another DataFrame.

See more: bigframes.pandas.DataFrame.update

bigframes.pandas.DataFrame.value_counts

value_counts( subset: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] = None, normalize: bool = False, sort: bool = True, ascending: bool = False, dropna: bool = True, )

Return a Series containing counts of unique rows in the DataFrame.

See more: bigframes.pandas.DataFrame.value_counts

bigframes.pandas.DataFrame.var

var( axis: typing.Union[str, int] = 0, *, numeric_only: bool = False ) -> bigframes.series.Series

Return unbiased variance over requested axis.

See more: bigframes.pandas.DataFrame.var

bigframes.pandas.DataFrame.where

where(cond, other=None)

Replace values where the condition is False.

See more: bigframes.pandas.DataFrame.where

bigframes.pandas.Index.__setitem__

__setitem__(key, value) -> None

Index objects are immutable.

See more: bigframes.pandas.Index.setitem

bigframes.pandas.Index.all

all() -> bool

Return whether all elements are Truthy.

See more: bigframes.pandas.Index.all

bigframes.pandas.Index.any

any() -> bool

Return whether any element is Truthy.

See more: bigframes.pandas.Index.any

bigframes.pandas.Index.argmax

argmax() -> int

Return int position of the largest value in the Series.

See more: bigframes.pandas.Index.argmax

bigframes.pandas.Index.argmin

argmin() -> int

Return int position of the smallest value in the series.

See more: bigframes.pandas.Index.argmin

bigframes.pandas.Index.astype

astype( dtype, *, errors: typing.Literal["raise", "null"] = "raise" ) -> bigframes.core.indexes.base.Index

Create an Index with values cast to dtypes.

See more: bigframes.pandas.Index.astype

bigframes.pandas.Index.copy

copy(name: typing.Optional[typing.Hashable] = None)

Make a copy of this object.

See more: bigframes.pandas.Index.copy

bigframes.pandas.Index.drop

drop(labels: typing.Any) -> bigframes.core.indexes.base.Index

Make new Index with passed list of labels deleted.

See more: bigframes.pandas.Index.drop

bigframes.pandas.Index.drop_duplicates

drop_duplicates(*, keep: __builtins__.str = "first") -> Index

Return Index with duplicate values removed.

See more: bigframes.pandas.Index.drop_duplicates

bigframes.pandas.Index.dropna

dropna( how: typing.Literal["all", "any"] = "any", ) -> bigframes.core.indexes.base.Index

Return Index without NA/NaN values.

See more: bigframes.pandas.Index.dropna

bigframes.pandas.Index.fillna

fillna(value=None) -> bigframes.core.indexes.base.Index

Fill NA (NULL in BigQuery) values using the specified method.

See more: bigframes.pandas.Index.fillna

bigframes.pandas.Index.from_frame

from_frame( frame: typing.Union[bigframes.series.Series, bigframes.dataframe.DataFrame], ) -> bigframes.core.indexes.base.Index

Make a MultiIndex from a DataFrame.

See more: bigframes.pandas.Index.from_frame

bigframes.pandas.Index.get_level_values

get_level_values(level) -> bigframes.core.indexes.base.Index

Return an Index of values for requested level.

See more: bigframes.pandas.Index.get_level_values

bigframes.pandas.Index.get_loc

get_loc(key) -> typing.Union[int, slice, bigframes.series.Series]

Get integer location, slice or boolean mask for requested label.

See more: bigframes.pandas.Index.get_loc

bigframes.pandas.Index.isin

isin(values) -> bigframes.core.indexes.base.Index

Return a boolean array where the index values are in values.

See more: bigframes.pandas.Index.isin

bigframes.pandas.Index.item

item()

Return the first element of the underlying data as a Python scalar.

See more: bigframes.pandas.Index.item

bigframes.pandas.Index.max

max() -> typing.Any

Return the maximum value of the Index.

See more: bigframes.pandas.Index.max

bigframes.pandas.Index.min

min() -> typing.Any

Return the minimum value of the Index.

See more: bigframes.pandas.Index.min

bigframes.pandas.Index.nunique

nunique() -> int

Return number of unique elements in the object.

See more: bigframes.pandas.Index.nunique

bigframes.pandas.Index.rename

Alter Index or MultiIndex name.

See more: bigframes.pandas.Index.rename

bigframes.pandas.Index.sort_values

sort_values( *, inplace: bool = False, ascending: bool = True, na_position: __builtins__.str = "last" ) -> Index

Return a sorted copy of the index.

See more: bigframes.pandas.Index.sort_values

bigframes.pandas.Index.to_list

to_list(*, allow_large_results: typing.Optional[bool] = None) -> list

API documentation for to_list method.

See more: bigframes.pandas.Index.to_list

bigframes.pandas.Index.to_numpy

to_numpy(dtype=None, *, allow_large_results=None, **kwargs) -> numpy.ndarray

A NumPy ndarray representing the values in this Series or Index.

See more: bigframes.pandas.Index.to_numpy

bigframes.pandas.Index.to_pandas

Gets the Index as a pandas Index.

See more: bigframes.pandas.Index.to_pandas

bigframes.pandas.Index.to_series

to_series( index: typing.Optional[bigframes.core.indexes.base.Index] = None, name: typing.Optional[typing.Hashable] = None, ) -> bigframes.series.Series

Create a Series with both index and values equal to the index keys.

See more: bigframes.pandas.Index.to_series

bigframes.pandas.Index.transpose

transpose() -> bigframes.core.indexes.base.Index

Return the transpose, which is by definition self.

See more: bigframes.pandas.Index.transpose

bigframes.pandas.Index.unique

unique( level: typing.Optional[typing.Union[typing.Hashable, int]] = None, ) -> bigframes.core.indexes.base.Index

Returns unique values in the index.

See more: bigframes.pandas.Index.unique

bigframes.pandas.Index.value_counts

value_counts( normalize: bool = False, sort: bool = True, ascending: bool = False, *, dropna: bool = True )

Return a Series containing counts of unique values.

See more: bigframes.pandas.Index.value_counts

bigframes.pandas.MultiIndex.from_arrays

from_arrays( arrays, sortorder: int | None = None, names=None, *, session: Optional[bigframes.session.Session] = None ) -> MultiIndex

Convert arrays to MultiIndex.

See more: bigframes.pandas.MultiIndex.from_arrays

bigframes.pandas.MultiIndex.from_tuples

from_tuples( tuples: Iterable[tuple[Hashable, ...]], sortorder: int | None = None, names: Sequence[Hashable] | Hashable | None = None, *, session: Optional[bigframes.session.Session] = None ) -> MultiIndex

Convert list of tuples to MultiIndex.

See more: bigframes.pandas.MultiIndex.from_tuples

bigframes.pandas.NamedAgg

NamedAgg(column, aggfunc)

Create new instance of NamedAgg(column, aggfunc).

See more: bigframes.pandas.NamedAgg

bigframes.pandas.Series.__abs__

__abs__() -> bigframes.series.Series

Return a Series/DataFrame with absolute numeric value of each element.

See more: bigframes.pandas.Series.abs

bigframes.pandas.Series.__add__

__add__( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Get addition of Series and other, element-wise, using operator +.

See more: bigframes.pandas.Series.add

bigframes.pandas.Series.__and__

__and__(other: bool | int | bigframes.series.Series) -> bigframes.series.Series

Get bitwise AND of Series and other, element-wise, using operator &.

See more: bigframes.pandas.Series.and

bigframes.pandas.Series.__array__

__array__(dtype=None, copy: typing.Optional[bool] = None) -> numpy.ndarray

Returns the values as NumPy array.

See more: bigframes.pandas.Series.array

bigframes.pandas.Series.__array_ufunc__

__array_ufunc__( ufunc: numpy.ufunc, method: str, *inputs, **kwargs ) -> bigframes.series.Series

Used to support numpy ufuncs.

See more: bigframes.pandas.Series.array_ufunc

bigframes.pandas.Series.__floordiv__

__floordiv__( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Get integer division of Series by other, using arithmetic operator //.

See more: bigframes.pandas.Series.floordiv

bigframes.pandas.Series.__getitem__

__getitem__(indexer)

Gets the specified index from the Series.

See more: bigframes.pandas.Series.getitem

bigframes.pandas.Series.__invert__

__invert__() -> bigframes.series.Series

Returns the logical inversion (binary NOT) of the Series, element-wise using operator ````.

See more: bigframes.pandas.Series.invert

bigframes.pandas.Series.__len__

__len__()

Returns number of values in the Series, serves len operator.

See more: bigframes.pandas.Series.len

bigframes.pandas.Series.__matmul__

__matmul__(other)

Matrix multiplication using binary @ operator.

See more: bigframes.pandas.Series.matmul

bigframes.pandas.Series.__mod__

__mod__(other) -> bigframes.series.Series

Get modulo of Series with other, element-wise, using operator %.

See more: bigframes.pandas.Series.mod

bigframes.pandas.Series.__mul__

__mul__(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Get multiplication of Series with other, element-wise, using operator *.

See more: bigframes.pandas.Series.mul

bigframes.pandas.Series.__or__

__or__(other: bool | int | bigframes.series.Series) -> bigframes.series.Series

Get bitwise XOR of Series and other, element-wise, using operator ^.

See more: bigframes.pandas.Series.or

bigframes.pandas.Series.__pow__

__pow__(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Get exponentiation of Series with other, element-wise, using operator **.

See more: bigframes.pandas.Series.pow

bigframes.pandas.Series.__radd__

__radd__( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Get addition of Series and other, element-wise, using operator +.

See more: bigframes.pandas.Series.radd

bigframes.pandas.Series.__rand__

__rand__(other: bool | int | bigframes.series.Series) -> bigframes.series.Series

Get bitwise AND of Series and other, element-wise, using operator &.

See more: bigframes.pandas.Series.rand

bigframes.pandas.Series.__rfloordiv__

__rfloordiv__( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Get integer division of other by Series, using arithmetic operator //.

See more: bigframes.pandas.Series.rfloordiv

bigframes.pandas.Series.__rmatmul__

__rmatmul__(other)

Matrix multiplication using binary @ operator.

See more: bigframes.pandas.Series.rmatmul

bigframes.pandas.Series.__rmod__

__rmod__(other) -> bigframes.series.Series

Get modulo of other with Series, element-wise, using operator %.

See more: bigframes.pandas.Series.rmod

bigframes.pandas.Series.__rmul__

__rmul__(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Get multiplication of other with Series, element-wise, using operator *.

See more: bigframes.pandas.Series.rmul

bigframes.pandas.Series.__ror__

__ror__(other: bool | int | bigframes.series.Series) -> bigframes.series.Series

Get bitwise XOR of Series and other, element-wise, using operator ^.

See more: bigframes.pandas.Series.ror

bigframes.pandas.Series.__rpow__

__rpow__(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Get exponentiation of other with Series, element-wise, using operator **.

See more: bigframes.pandas.Series.rpow

bigframes.pandas.Series.__rsub__

__rsub__(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Get subtraction of Series from other, element-wise, using operator -.

See more: bigframes.pandas.Series.rsub

bigframes.pandas.Series.__rtruediv__

__rtruediv__( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Get division of other by Series, element-wise, using operator /.

See more: bigframes.pandas.Series.rtruediv

bigframes.pandas.Series.__setitem__

__setitem__(key, value) -> None

Set item using direct assignment, delegating to .loc indexer.

See more: bigframes.pandas.Series.setitem

bigframes.pandas.Series.__sub__

__sub__(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Get subtraction of other from Series, element-wise, using operator -.

See more: bigframes.pandas.Series.sub

bigframes.pandas.Series.__truediv__

__truediv__( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Get division of Series by other, element-wise, using operator /.

See more: bigframes.pandas.Series.truediv

bigframes.pandas.Series.abs

abs() -> bigframes.series.Series

Return a Series/DataFrame with absolute numeric value of each element.

See more: bigframes.pandas.Series.abs

bigframes.pandas.Series.add

add( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Return addition of Series and other, element-wise (binary operator add).

See more: bigframes.pandas.Series.add

bigframes.pandas.Series.add_prefix

add_prefix(prefix: str, axis: int | str | None = None) -> bigframes.series.Series

Prefix labels with string prefix.

See more: bigframes.pandas.Series.add_prefix

bigframes.pandas.Series.add_suffix

add_suffix(suffix: str, axis: int | str | None = None) -> bigframes.series.Series

Suffix labels with string suffix.

See more: bigframes.pandas.Series.add_suffix

bigframes.pandas.Series.agg

agg( func: typing.Union[str, typing.Sequence[str]], ) -> typing.Union[typing.Any, bigframes.series.Series]

Aggregate using one or more operations over the specified axis.

See more: bigframes.pandas.Series.agg

bigframes.pandas.Series.aggregate

aggregate( func: typing.Union[str, typing.Sequence[str]], ) -> typing.Union[typing.Any, bigframes.series.Series]

Aggregate using one or more operations over the specified axis.

See more: bigframes.pandas.Series.aggregate

bigframes.pandas.Series.all

all() -> bool

Return whether all elements are True, potentially over an axis.

See more: bigframes.pandas.Series.all

bigframes.pandas.Series.any

any() -> bool

Return whether any element is True, potentially over an axis.

See more: bigframes.pandas.Series.any

bigframes.pandas.Series.apply

apply( func, by_row: typing.Union[typing.Literal["compat"], bool] = "compat", *, args: typing.Tuple = () ) -> bigframes.series.Series

Invoke function on values of a Series.

See more: bigframes.pandas.Series.apply

bigframes.pandas.Series.area

area( x: typing.Optional[typing.Hashable] = None, y: typing.Optional[typing.Hashable] = None, stacked: bool = True, **kwargs )

Draw a stacked area plot.

See more: bigframes.pandas.Series.area

bigframes.pandas.Series.argmax

argmax() -> int

Return int position of the largest value in the series.

See more: bigframes.pandas.Series.argmax

bigframes.pandas.Series.argmin

argmin() -> int

Return int position of the smallest value in the Series.

See more: bigframes.pandas.Series.argmin

bigframes.pandas.Series.astype

astype( dtype: typing.Union[ typing.Literal[ "boolean", "Float64", "Int64", "int64[pyarrow]", "string", "string[pyarrow]", "timestamp[us, tz=UTC][pyarrow]", "timestamp[us][pyarrow]", "date32[day][pyarrow]", "time64[us][pyarrow]", "decimal128(38, 9)[pyarrow]", "decimal256(76, 38)[pyarrow]", "binary[pyarrow]", "duration[us][pyarrow]", ], pandas.core.arrays.boolean.BooleanDtype, pandas.core.arrays.floating.Float64Dtype, pandas.core.arrays.integer.Int64Dtype, pandas.core.arrays.string_.StringDtype, pandas.core.dtypes.dtypes.ArrowDtype, geopandas.array.GeometryDtype, ], *, errors: typing.Literal["raise", "null"] = "raise" ) -> bigframes.series.Series

Cast a pandas object to a specified dtype dtype.

See more: bigframes.pandas.Series.astype

bigframes.pandas.Series.autocorr

autocorr(lag: int = 1) -> float

Compute the lag-N autocorrelation.

See more: bigframes.pandas.Series.autocorr

bigframes.pandas.Series.bar

bar( x: typing.Optional[typing.Hashable] = None, y: typing.Optional[typing.Hashable] = None, **kwargs )

Draw a vertical bar plot.

See more: bigframes.pandas.Series.bar

bigframes.pandas.Series.between

between(left, right, inclusive="both")

Return boolean Series equivalent to left <= series <= right.

See more: bigframes.pandas.Series.between

bigframes.pandas.Series.bfill

bfill(*, limit: typing.Optional[int] = None) -> bigframes.series.Series

Fill NA/NaN values by using the next valid observation to fill the gap.

See more: bigframes.pandas.Series.bfill

bigframes.pandas.Series.cache

cache()

Materializes the Series to a temporary table.

See more: bigframes.pandas.Series.cache

bigframes.pandas.Series.case_when

case_when(caselist) -> bigframes.series.Series

Replace values where the conditions are True.

See more: bigframes.pandas.Series.case_when

bigframes.pandas.Series.clip

clip(lower=None, upper=None)

Trim values at input threshold(s).

See more: bigframes.pandas.Series.clip

bigframes.pandas.Series.combine

combine(other, func) -> bigframes.series.Series

Combine the Series with a Series or scalar according to func.

See more: bigframes.pandas.Series.combine

bigframes.pandas.Series.combine_first

combine_first(other: bigframes.series.Series) -> bigframes.series.Series

Update null elements with value in the same location in 'other'.

See more: bigframes.pandas.Series.combine_first

bigframes.pandas.Series.copy

copy() -> bigframes.series.Series

Make a copy of this object's indices and data.

See more: bigframes.pandas.Series.copy

bigframes.pandas.Series.corr

corr(other: bigframes.series.Series, method="pearson", min_periods=None) -> float

Compute the correlation with the other Series.

See more: bigframes.pandas.Series.corr

bigframes.pandas.Series.count

count() -> int

Return number of non-NA/null observations in the Series.

See more: bigframes.pandas.Series.count

bigframes.pandas.Series.cov

cov(other: bigframes.series.Series) -> float

Compute covariance with Series, excluding missing values.

See more: bigframes.pandas.Series.cov

bigframes.pandas.Series.cummax

cummax() -> bigframes.series.Series

Return cumulative maximum over a DataFrame or Series axis.

See more: bigframes.pandas.Series.cummax

bigframes.pandas.Series.cummin

cummin() -> bigframes.series.Series

Return cumulative minimum over a DataFrame or Series axis.

See more: bigframes.pandas.Series.cummin

bigframes.pandas.Series.cumprod

cumprod() -> bigframes.series.Series

Return cumulative product over a DataFrame or Series axis.

See more: bigframes.pandas.Series.cumprod

bigframes.pandas.Series.cumsum

cumsum() -> bigframes.series.Series

Return cumulative sum over a DataFrame or Series axis.

See more: bigframes.pandas.Series.cumsum

bigframes.pandas.Series.describe

describe() -> bigframes.series.Series

Generate descriptive statistics.

See more: bigframes.pandas.Series.describe

bigframes.pandas.Series.diff

diff(periods: int = 1) -> bigframes.series.Series

First discrete difference of element.

See more: bigframes.pandas.Series.diff

bigframes.pandas.Series.div

div( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Return floating division of Series and other, element-wise (binary operator truediv).

See more: bigframes.pandas.Series.div

bigframes.pandas.Series.divide

divide( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Return floating division of Series and other, element-wise (binary operator truediv).

See more: bigframes.pandas.Series.divide

bigframes.pandas.Series.divmod

divmod(other) -> typing.Tuple[bigframes.series.Series, bigframes.series.Series]

Return integer division and modulo of Series and other, element-wise (binary operator divmod).

See more: bigframes.pandas.Series.divmod

bigframes.pandas.Series.dot

dot(other)

Compute the dot product between the Series and the columns of other.

See more: bigframes.pandas.Series.dot

bigframes.pandas.Series.drop

drop( labels: typing.Any = None, *, axis: typing.Union[int, str] = 0, index: typing.Any = None, columns: typing.Union[typing.Hashable, typing.Iterable[typing.Hashable]] = None, level: typing.Optional[typing.Union[str, int]] = None ) -> bigframes.series.Series

Return Series with specified index labels removed.

See more: bigframes.pandas.Series.drop

bigframes.pandas.Series.drop_duplicates

drop_duplicates(*, keep: str = "first") -> bigframes.series.Series

Return Series with duplicate values removed.

See more: bigframes.pandas.Series.drop_duplicates

bigframes.pandas.Series.droplevel

droplevel( level: typing.Union[str, int, typing.Sequence[typing.Union[str, int]]], axis: int | str = 0, )

Return Series with requested index / column level(s) removed.

See more: bigframes.pandas.Series.droplevel

bigframes.pandas.Series.dropna

dropna( *, axis: int = 0, inplace: bool = False, how: typing.Optional[str] = None, ignore_index: bool = False ) -> bigframes.series.Series

Return a new Series with missing values removed.

See more: bigframes.pandas.Series.dropna

bigframes.pandas.Series.duplicated

duplicated(keep: str = "first") -> bigframes.series.Series

Indicate duplicate Series values.

See more: bigframes.pandas.Series.duplicated

bigframes.pandas.Series.eq

eq(other: object) -> bigframes.series.Series

Return equal of Series and other, element-wise (binary operator eq).

See more: bigframes.pandas.Series.eq

bigframes.pandas.Series.equals

equals( other: typing.Union[bigframes.series.Series, bigframes.dataframe.DataFrame], ) -> bool

Test whether two objects contain the same elements.

See more: bigframes.pandas.Series.equals

bigframes.pandas.Series.expanding

expanding(min_periods: int = 1) -> bigframes.core.window.rolling.Window

Provide expanding window calculations.

See more: bigframes.pandas.Series.expanding

bigframes.pandas.Series.explode

explode(*, ignore_index: typing.Optional[bool] = False) -> bigframes.series.Series

Transform each element of a list-like to a row.

See more: bigframes.pandas.Series.explode

bigframes.pandas.Series.ffill

ffill(*, limit: typing.Optional[int] = None) -> bigframes.series.Series

Fill NA/NaN values by propagating the last valid observation to next valid.

See more: bigframes.pandas.Series.ffill

bigframes.pandas.Series.fillna

fillna(value=None) -> bigframes.series.Series

Fill NA (NULL in BigQuery) values using the specified method.

See more: bigframes.pandas.Series.fillna

bigframes.pandas.Series.filter

filter( items: typing.Optional[typing.Iterable] = None, like: typing.Optional[str] = None, regex: typing.Optional[str] = None, axis: typing.Optional[typing.Union[str, int]] = None, ) -> bigframes.series.Series

Subset the dataframe rows or columns according to the specified index labels.

See more: bigframes.pandas.Series.filter

bigframes.pandas.Series.floordiv

floordiv( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Return integer division of Series and other, element-wise (binary operator floordiv).

See more: bigframes.pandas.Series.floordiv

bigframes.pandas.Series.ge

ge(other) -> bigframes.series.Series

Get 'greater than or equal to' of Series and other, element-wise (binary operator ge).

See more: bigframes.pandas.Series.ge

bigframes.pandas.Series.groupby

groupby( by: typing.Union[ typing.Hashable, bigframes.series.Series, typing.Sequence[typing.Union[typing.Hashable, bigframes.series.Series]], ] = None, axis=0, level: typing.Optional[ typing.Union[int, str, typing.Sequence[int], typing.Sequence[str]] ] = None, as_index: bool = True, *, dropna: bool = True ) -> bigframes.core.groupby.series_group_by.SeriesGroupBy

Group Series using a mapper or by a Series of columns.

See more: bigframes.pandas.Series.groupby

bigframes.pandas.Series.gt

gt(other) -> bigframes.series.Series

Return Greater than of series and other, element-wise (binary operator gt).

See more: bigframes.pandas.Series.gt

bigframes.pandas.Series.head

head(n: int = 5) -> bigframes.series.Series

Return the first n rows.

See more: bigframes.pandas.Series.head

bigframes.pandas.Series.hist

hist(by: typing.Optional[typing.Sequence[str]] = None, bins: int = 10, **kwargs)

Draw one histogram of the DataFrame’s columns.

See more: bigframes.pandas.Series.hist

bigframes.pandas.Series.idxmax

idxmax() -> typing.Hashable

Return the row label of the maximum value.

See more: bigframes.pandas.Series.idxmax

bigframes.pandas.Series.idxmin

idxmin() -> typing.Hashable

Return the row label of the minimum value.

See more: bigframes.pandas.Series.idxmin

bigframes.pandas.Series.interpolate

interpolate(method: str = "linear") -> bigframes.series.Series

Fill NaN values using an interpolation method.

See more: bigframes.pandas.Series.interpolate

bigframes.pandas.Series.isin

isin(values) -> bigframes.series.Series

Whether elements in Series are contained in values.

See more: bigframes.pandas.Series.isin

bigframes.pandas.Series.isna

isna() -> bigframes.series.Series

Detect missing (NULL) values.

See more: bigframes.pandas.Series.isna

bigframes.pandas.Series.isnull

isnull() -> bigframes.series.Series

Detect missing (NULL) values.

See more: bigframes.pandas.Series.isnull

bigframes.pandas.Series.item

item()

Return the first element of the underlying data as a Python scalar.

See more: bigframes.pandas.Series.item

bigframes.pandas.Series.items

items()

Lazily iterate over (index, value) tuples.

See more: bigframes.pandas.Series.items

bigframes.pandas.Series.keys

keys() -> bigframes.core.indexes.base.Index

Return alias for index.

See more: bigframes.pandas.Series.keys

bigframes.pandas.Series.kurt

kurt()

Return unbiased kurtosis over requested axis.

See more: bigframes.pandas.Series.kurt

bigframes.pandas.Series.kurtosis

kurtosis()

Return unbiased kurtosis over requested axis.

See more: bigframes.pandas.Series.kurtosis

bigframes.pandas.Series.le

le(other) -> bigframes.series.Series

Get 'less than or equal to' of Series and other, element-wise (binary operator le).

See more: bigframes.pandas.Series.le

bigframes.pandas.Series.line

line( x: typing.Optional[typing.Hashable] = None, y: typing.Optional[typing.Hashable] = None, **kwargs )

Plot Series or DataFrame as lines.

See more: bigframes.pandas.Series.line

bigframes.pandas.Series.lt

lt(other) -> bigframes.series.Series

Get 'less than' of Series and other, element-wise (binary operator lt).

See more: bigframes.pandas.Series.lt

bigframes.pandas.Series.map

map( arg: typing.Union[typing.Mapping, bigframes.series.Series, typing.Callable], na_action: typing.Optional[str] = None, *, verify_integrity: bool = False ) -> bigframes.series.Series

Map values of Series according to an input mapping or function.

See more: bigframes.pandas.Series.map

bigframes.pandas.Series.mask

mask(cond, other=None) -> bigframes.series.Series

Replace values where the condition is True.

See more: bigframes.pandas.Series.mask

bigframes.pandas.Series.max

max() -> typing.Any

Return the maximum of the values over the requested axis.

See more: bigframes.pandas.Series.max

bigframes.pandas.Series.mean

mean() -> float

Return the mean of the values over the requested axis.

See more: bigframes.pandas.Series.mean

bigframes.pandas.Series.median

median(*, exact: bool = True) -> float

Return the median of the values over the requested axis.

See more: bigframes.pandas.Series.median

bigframes.pandas.Series.min

min() -> typing.Any

Return the maximum of the values over the requested axis.

See more: bigframes.pandas.Series.min

bigframes.pandas.Series.mod

mod(other) -> bigframes.series.Series

Return modulo of Series and other, element-wise (binary operator mod).

See more: bigframes.pandas.Series.mod

bigframes.pandas.Series.mode

mode() -> bigframes.series.Series

Return the mode(s) of the Series.

See more: bigframes.pandas.Series.mode

bigframes.pandas.Series.mul

mul(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Return multiplication of Series and other, element-wise (binary operator mul).

See more: bigframes.pandas.Series.mul

bigframes.pandas.Series.multiply

multiply(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Return multiplication of Series and other, element-wise (binary operator mul).

See more: bigframes.pandas.Series.multiply

bigframes.pandas.Series.ne

ne(other: object) -> bigframes.series.Series

Return not equal of Series and other, element-wise (binary operator ne).

See more: bigframes.pandas.Series.ne

bigframes.pandas.Series.nlargest

nlargest(n: int = 5, keep: str = "first") -> bigframes.series.Series

Return the largest n elements.

See more: bigframes.pandas.Series.nlargest

bigframes.pandas.Series.notna

notna() -> bigframes.series.Series

Detect existing (non-missing) values.

See more: bigframes.pandas.Series.notna

bigframes.pandas.Series.notnull

notnull() -> bigframes.series.Series

Detect existing (non-missing) values.

See more: bigframes.pandas.Series.notnull

bigframes.pandas.Series.nsmallest

nsmallest(n: int = 5, keep: str = "first") -> bigframes.series.Series

Return the smallest n elements.

See more: bigframes.pandas.Series.nsmallest

bigframes.pandas.Series.nunique

nunique() -> int

Return number of unique elements in the object.

See more: bigframes.pandas.Series.nunique

bigframes.pandas.Series.pad

pad(*, limit: typing.Optional[int] = None) -> bigframes.series.Series

Fill NA/NaN values by propagating the last valid observation to next valid.

See more: bigframes.pandas.Series.pad

bigframes.pandas.Series.pct_change

pct_change(periods: int = 1) -> bigframes.series.Series

Fractional change between the current and a prior element.

See more: bigframes.pandas.Series.pct_change

bigframes.pandas.Series.peek

peek( n: int = 5, *, force: bool = True, allow_large_results=None ) -> pandas.core.series.Series

Preview n arbitrary elements from the series without guarantees about row selection or ordering.

See more: bigframes.pandas.Series.peek

bigframes.pandas.Series.pow

pow(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Return Exponential power of series and other, element-wise (binary operator pow).

See more: bigframes.pandas.Series.pow

bigframes.pandas.Series.prod

prod() -> float

Return the product of the values over the requested axis.

See more: bigframes.pandas.Series.prod

bigframes.pandas.Series.product

product() -> float

Return the product of the values over the requested axis.

See more: bigframes.pandas.Series.product

bigframes.pandas.Series.quantile

quantile( q: typing.Union[float, typing.Sequence[float]] = 0.5, ) -> typing.Union[bigframes.series.Series, float]

Return value at the given quantile.

See more: bigframes.pandas.Series.quantile

bigframes.pandas.Series.radd

radd( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Return addition of Series and other, element-wise (binary operator radd).

See more: bigframes.pandas.Series.radd

bigframes.pandas.Series.rank

rank( axis=0, method: str = "average", numeric_only=False, na_option: str = "keep", ascending: bool = True, pct: bool = False, ) -> bigframes.series.Series

Compute numerical data ranks (1 through n) along axis.

See more: bigframes.pandas.Series.rank

bigframes.pandas.Series.rdiv

rdiv( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Return floating division of Series and other, element-wise (binary operator rtruediv).

See more: bigframes.pandas.Series.rdiv

bigframes.pandas.Series.rdivmod

rdivmod(other) -> typing.Tuple[bigframes.series.Series, bigframes.series.Series]

Return integer division and modulo of Series and other, element-wise (binary operator rdivmod).

See more: bigframes.pandas.Series.rdivmod

bigframes.pandas.Series.reindex

reindex(index=None, *, validate: typing.Optional[bool] = None)

Conform Series to new index with optional filling logic.

See more: bigframes.pandas.Series.reindex

bigframes.pandas.Series.reindex_like

reindex_like( other: bigframes.series.Series, *, validate: typing.Optional[bool] = None )

Return an object with matching indices as other object.

See more: bigframes.pandas.Series.reindex_like

bigframes.pandas.Series.rename

Alter Series index labels or name.

See more: bigframes.pandas.Series.rename

bigframes.pandas.Series.rename_axis

Set the name of the axis for the index or columns.

See more: bigframes.pandas.Series.rename_axis

bigframes.pandas.Series.reorder_levels

reorder_levels( order: typing.Union[str, int, typing.Sequence[typing.Union[str, int]]], axis: int | str = 0, )

Rearrange index levels using input order.

See more: bigframes.pandas.Series.reorder_levels

bigframes.pandas.Series.replace

replace(to_replace: typing.Any, value: typing.Any = None, *, regex: bool = False)

Replace values given in to_replace with value.

See more: bigframes.pandas.Series.replace

bigframes.pandas.Series.resample

resample( rule: str, *, closed: typing.Optional[typing.Literal["right", "left"]] = None, label: typing.Optional[typing.Literal["right", "left"]] = None, level: typing.Optional[ typing.Union[str, int, typing.Sequence[typing.Union[str, int]]] ] = None, origin: typing.Union[ pandas._libs.tslibs.timestamps.Timestamp, datetime.datetime, numpy.datetime64, int, float, str, typing.Literal["epoch", "start", "start_day", "end", "end_day"], ] = "start_day" ) -> bigframes.core.groupby.series_group_by.SeriesGroupBy

Resample time-series data.

See more: bigframes.pandas.Series.resample

bigframes.pandas.Series.reset_index

Generate a new DataFrame or Series with the index reset.

See more: bigframes.pandas.Series.reset_index

bigframes.pandas.Series.rfloordiv

rfloordiv( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Return integer division of Series and other, element-wise (binary operator rfloordiv).

See more: bigframes.pandas.Series.rfloordiv

bigframes.pandas.Series.rmod

rmod(other) -> bigframes.series.Series

Return modulo of Series and other, element-wise (binary operator mod).

See more: bigframes.pandas.Series.rmod

bigframes.pandas.Series.rmul

rmul(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Return multiplication of Series and other, element-wise (binary operator mul).

See more: bigframes.pandas.Series.rmul

bigframes.pandas.Series.rolling

rolling( window: ( int | pandas._libs.tslibs.timedeltas.Timedelta | numpy.timedelta64 | datetime.timedelta | str ), min_periods: int | None = None, closed: typing.Literal["right", "left", "both", "neither"] = "right", ) -> bigframes.core.window.rolling.Window

Provide rolling window calculations.

See more: bigframes.pandas.Series.rolling

bigframes.pandas.Series.round

round(decimals=0) -> bigframes.series.Series

Round each value in a Series to the given number of decimals.

See more: bigframes.pandas.Series.round

bigframes.pandas.Series.rpow

rpow(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Return Exponential power of series and other, element-wise (binary operator rpow).

See more: bigframes.pandas.Series.rpow

bigframes.pandas.Series.rsub

rsub(other) -> bigframes.series.Series

Return subtraction of Series and other, element-wise (binary operator rsub).

See more: bigframes.pandas.Series.rsub

bigframes.pandas.Series.rtruediv

rtruediv( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Return floating division of Series and other, element-wise (binary operator rtruediv).

See more: bigframes.pandas.Series.rtruediv

bigframes.pandas.Series.sample

sample( n: typing.Optional[int] = None, frac: typing.Optional[float] = None, *, random_state: typing.Optional[int] = None, sort: typing.Optional[typing.Union[bool, typing.Literal["random"]]] = "random" ) -> bigframes.series.Series

Return a random sample of items from an axis of object.

See more: bigframes.pandas.Series.sample

bigframes.pandas.Series.shift

shift(periods: int = 1) -> bigframes.series.Series

Shift index by desired number of periods.

See more: bigframes.pandas.Series.shift

bigframes.pandas.Series.skew

skew()

Return unbiased skew over requested axis.

See more: bigframes.pandas.Series.skew

bigframes.pandas.Series.sort_index

Sort Series by index labels.

See more: bigframes.pandas.Series.sort_index

bigframes.pandas.Series.sort_values

Sort by the values.

See more: bigframes.pandas.Series.sort_values

bigframes.pandas.Series.std

std() -> float

Return sample standard deviation over requested axis.

See more: bigframes.pandas.Series.std

bigframes.pandas.Series.sub

sub(other) -> bigframes.series.Series

Return subtraction of Series and other, element-wise (binary operator sub).

See more: bigframes.pandas.Series.sub

bigframes.pandas.Series.subtract

subtract(other) -> bigframes.series.Series

Return subtraction of Series and other, element-wise (binary operator sub).

See more: bigframes.pandas.Series.subtract

bigframes.pandas.Series.sum

sum() -> float

Return the sum of the values over the requested axis.

See more: bigframes.pandas.Series.sum

bigframes.pandas.Series.swaplevel

swaplevel(i: int = -2, j: int = -1)

Swap levels i and j in a MultiIndex.

See more: bigframes.pandas.Series.swaplevel

bigframes.pandas.Series.tail

tail(n: int = 5) -> bigframes.series.Series

Return the last n rows.

See more: bigframes.pandas.Series.tail

bigframes.pandas.Series.take

take( indices: typing.Sequence[int], axis: int | str | None = 0, **kwargs ) -> bigframes.series.Series

Return the elements in the given positional indices along an axis.

See more: bigframes.pandas.Series.take

bigframes.pandas.Series.to_csv

to_csv( path_or_buf=None, sep=",", *, header: bool = True, index: bool = True, allow_large_results: typing.Optional[bool] = None ) -> typing.Optional[str]

Write object to a comma-separated values (csv) file on Cloud Storage.

See more: bigframes.pandas.Series.to_csv

bigframes.pandas.Series.to_dict

to_dict( into: type[dict] = dict, *, allow_large_results: typing.Optional[bool] = None ) -> typing.Mapping

Convert Series to {label -> value} dict or dict-like object.

See more: bigframes.pandas.Series.to_dict

bigframes.pandas.Series.to_excel

to_excel( excel_writer, sheet_name="Sheet1", *, allow_large_results=None, **kwargs ) -> None

Write Series to an Excel sheet.

See more: bigframes.pandas.Series.to_excel

bigframes.pandas.Series.to_frame

to_frame(name: typing.Hashable = None) -> bigframes.dataframe.DataFrame

Convert Series to DataFrame.

See more: bigframes.pandas.Series.to_frame

bigframes.pandas.Series.to_json

to_json( path_or_buf=None, orient: typing.Optional[ typing.Literal["split", "records", "index", "columns", "values", "table"] ] = None, *, lines: bool = False, index: bool = True, allow_large_results: typing.Optional[bool] = None ) -> typing.Optional[str]

Convert the object to a JSON string, written to Cloud Storage.

See more: bigframes.pandas.Series.to_json

bigframes.pandas.Series.to_latex

to_latex( buf=None, columns=None, header=True, index=True, *, allow_large_results=None, **kwargs ) -> typing.Optional[str]

Render object to a LaTeX tabular, longtable, or nested table.

See more: bigframes.pandas.Series.to_latex

bigframes.pandas.Series.to_list

to_list(*, allow_large_results: typing.Optional[bool] = None) -> list

Return a list of the values.

See more: bigframes.pandas.Series.to_list

bigframes.pandas.Series.to_markdown

to_markdown( buf: typing.Optional[typing.IO[str]] = None, mode: str = "wt", index: bool = True, *, allow_large_results: typing.Optional[bool] = None, **kwargs ) -> typing.Optional[str]

Print Series in Markdown-friendly format.

See more: bigframes.pandas.Series.to_markdown

bigframes.pandas.Series.to_numpy

to_numpy( dtype=None, copy=False, na_value=_NoDefault.no_default, *, allow_large_results=None, **kwargs ) -> numpy.ndarray

A NumPy ndarray representing the values in this Series or Index.

See more: bigframes.pandas.Series.to_numpy

bigframes.pandas.Series.to_pandas

to_pandas( max_download_size: typing.Optional[int] = None, sampling_method: typing.Optional[str] = None, random_state: typing.Optional[int] = None, *, ordered: bool = True, dry_run: bool = False, allow_large_results: typing.Optional[bool] = None ) -> pandas.core.series.Series

Writes Series to pandas Series.

See more: bigframes.pandas.Series.to_pandas

bigframes.pandas.Series.to_pandas_batches

to_pandas_batches( page_size: typing.Optional[int] = None, max_results: typing.Optional[int] = None, *, allow_large_results: typing.Optional[bool] = None ) -> typing.Iterable[pandas.core.series.Series]

Stream Series results to an iterable of pandas Series.

See more: bigframes.pandas.Series.to_pandas_batches

bigframes.pandas.Series.to_pickle

to_pickle(path, *, allow_large_results=None, **kwargs) -> None

Pickle (serialize) object to file.

See more: bigframes.pandas.Series.to_pickle

bigframes.pandas.Series.to_string

to_string( buf=None, na_rep="NaN", float_format=None, header=True, index=True, length=False, dtype=False, name=False, max_rows=None, min_rows=None, *, allow_large_results=None ) -> typing.Optional[str]

Render a string representation of the Series.

See more: bigframes.pandas.Series.to_string

bigframes.pandas.Series.to_xarray

to_xarray(*, allow_large_results: typing.Optional[bool] = None)

Return an xarray object from the pandas object.

See more: bigframes.pandas.Series.to_xarray

bigframes.pandas.Series.tolist

tolist(*, allow_large_results: typing.Optional[bool] = None) -> list

Return a list of the values.

See more: bigframes.pandas.Series.tolist

bigframes.pandas.Series.transpose

transpose() -> bigframes.series.Series

Return the transpose, which is by definition self.

See more: bigframes.pandas.Series.transpose

bigframes.pandas.Series.truediv

truediv( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Return floating division of Series and other, element-wise (binary operator truediv).

See more: bigframes.pandas.Series.truediv

bigframes.pandas.Series.unique

unique(keep_order=True) -> bigframes.series.Series

Return unique values of Series object.

See more: bigframes.pandas.Series.unique

bigframes.pandas.Series.unstack

unstack( level: typing.Union[str, int, typing.Sequence[typing.Union[str, int]]] = -1, )

Unstack, also known as pivot, Series with MultiIndex to produce DataFrame.

See more: bigframes.pandas.Series.unstack

bigframes.pandas.Series.update

update( other: typing.Union[bigframes.series.Series, typing.Sequence, typing.Mapping], ) -> None

Modify Series in place using values from passed Series.

See more: bigframes.pandas.Series.update

bigframes.pandas.Series.value_counts

value_counts( normalize: bool = False, sort: bool = True, ascending: bool = False, *, dropna: bool = True )

Return a Series containing counts of unique values.

See more: bigframes.pandas.Series.value_counts

bigframes.pandas.Series.var

var() -> float

Return unbiased variance over requested axis.

See more: bigframes.pandas.Series.var

bigframes.pandas.Series.where

where(cond, other=None)

Replace values where the condition is False.

See more: bigframes.pandas.Series.where

bigframes.pandas.StringDtype.__from_arrow__

__from_arrow__(array: pyarrow.Array | pyarrow.ChunkedArray) -> BaseStringArray

Construct StringArray from pyarrow Array/ChunkedArray.

See more: bigframes.pandas.StringDtype.from_arrow

bigframes.pandas.StringDtype.construct_array_type

construct_array_type() -> type_t[BaseStringArray]

Return the array type associated with this dtype.

See more: bigframes.pandas.StringDtype.construct_array_type

bigframes.pandas.StringDtype.construct_from_string

construct_from_string(string) -> Self

Construct a StringDtype from a string.

See more: bigframes.pandas.StringDtype.construct_from_string

bigframes.series.Series.__abs__

__abs__() -> bigframes.series.Series

Return a Series/DataFrame with absolute numeric value of each element.

See more: bigframes.series.Series.abs

bigframes.series.Series.__add__

__add__( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Get addition of Series and other, element-wise, using operator +.

See more: bigframes.series.Series.add

bigframes.series.Series.__and__

__and__(other: bool | int | bigframes.series.Series) -> bigframes.series.Series

Get bitwise AND of Series and other, element-wise, using operator &.

See more: bigframes.series.Series.and

bigframes.series.Series.__array__

__array__(dtype=None, copy: typing.Optional[bool] = None) -> numpy.ndarray

Returns the values as NumPy array.

See more: bigframes.series.Series.array

bigframes.series.Series.__array_ufunc__

__array_ufunc__( ufunc: numpy.ufunc, method: str, *inputs, **kwargs ) -> bigframes.series.Series

Used to support numpy ufuncs.

See more: bigframes.series.Series.array_ufunc

bigframes.series.Series.__bool__

__bool__()

Returns the truth value of the object.

See more: bigframes.series.Series.bool

bigframes.series.Series.__floordiv__

__floordiv__( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Get integer division of Series by other, using arithmetic operator //.

See more: bigframes.series.Series.floordiv

bigframes.series.Series.__getitem__

__getitem__(indexer)

Gets the specified index from the Series.

See more: bigframes.series.Series.getitem

bigframes.series.Series.__invert__

__invert__() -> bigframes.series.Series

Returns the logical inversion (binary NOT) of the Series, element-wise using operator ````.

See more: bigframes.series.Series.invert

bigframes.series.Series.__len__

__len__()

Returns number of values in the Series, serves len operator.

See more: bigframes.series.Series.len

bigframes.series.Series.__matmul__

__matmul__(other)

Matrix multiplication using binary @ operator.

See more: bigframes.series.Series.matmul

bigframes.series.Series.__mod__

__mod__(other) -> bigframes.series.Series

Get modulo of Series with other, element-wise, using operator %.

See more: bigframes.series.Series.mod

bigframes.series.Series.__mul__

__mul__(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Get multiplication of Series with other, element-wise, using operator *.

See more: bigframes.series.Series.mul

bigframes.series.Series.__nonzero__

__nonzero__()

Returns the truth value of the object.

See more: bigframes.series.Series.nonzero

bigframes.series.Series.__or__

__or__(other: bool | int | bigframes.series.Series) -> bigframes.series.Series

Get bitwise XOR of Series and other, element-wise, using operator ^.

See more: bigframes.series.Series.or

bigframes.series.Series.__pow__

__pow__(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Get exponentiation of Series with other, element-wise, using operator **.

See more: bigframes.series.Series.pow

bigframes.series.Series.__radd__

__radd__( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Get addition of Series and other, element-wise, using operator +.

See more: bigframes.series.Series.radd

bigframes.series.Series.__rand__

__rand__(other: bool | int | bigframes.series.Series) -> bigframes.series.Series

Get bitwise AND of Series and other, element-wise, using operator &.

See more: bigframes.series.Series.rand

bigframes.series.Series.__rfloordiv__

__rfloordiv__( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Get integer division of other by Series, using arithmetic operator //.

See more: bigframes.series.Series.rfloordiv

bigframes.series.Series.__rmatmul__

__rmatmul__(other)

Matrix multiplication using binary @ operator.

See more: bigframes.series.Series.rmatmul

bigframes.series.Series.__rmod__

__rmod__(other) -> bigframes.series.Series

Get modulo of other with Series, element-wise, using operator %.

See more: bigframes.series.Series.rmod

bigframes.series.Series.__rmul__

__rmul__(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Get multiplication of other with Series, element-wise, using operator *.

See more: bigframes.series.Series.rmul

bigframes.series.Series.__ror__

__ror__(other: bool | int | bigframes.series.Series) -> bigframes.series.Series

Get bitwise XOR of Series and other, element-wise, using operator ^.

See more: bigframes.series.Series.ror

bigframes.series.Series.__rpow__

__rpow__(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Get exponentiation of other with Series, element-wise, using operator **.

See more: bigframes.series.Series.rpow

bigframes.series.Series.__rsub__

__rsub__(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Get subtraction of Series from other, element-wise, using operator -.

See more: bigframes.series.Series.rsub

bigframes.series.Series.__rtruediv__

__rtruediv__( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Get division of other by Series, element-wise, using operator /.

See more: bigframes.series.Series.rtruediv

bigframes.series.Series.__setitem__

__setitem__(key, value) -> None

Set item using direct assignment, delegating to .loc indexer.

See more: bigframes.series.Series.setitem

bigframes.series.Series.__sub__

__sub__(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Get subtraction of other from Series, element-wise, using operator -.

See more: bigframes.series.Series.sub

bigframes.series.Series.__truediv__

__truediv__( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Get division of Series by other, element-wise, using operator /.

See more: bigframes.series.Series.truediv

bigframes.series.Series.abs

abs() -> bigframes.series.Series

Return a Series/DataFrame with absolute numeric value of each element.

See more: bigframes.series.Series.abs

bigframes.series.Series.add

add( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Return addition of Series and other, element-wise (binary operator add).

See more: bigframes.series.Series.add

bigframes.series.Series.add_prefix

add_prefix(prefix: str, axis: int | str | None = None) -> bigframes.series.Series

Prefix labels with string prefix.

See more: bigframes.series.Series.add_prefix

bigframes.series.Series.add_suffix

add_suffix(suffix: str, axis: int | str | None = None) -> bigframes.series.Series

Suffix labels with string suffix.

See more: bigframes.series.Series.add_suffix

bigframes.series.Series.agg

agg( func: typing.Union[str, typing.Sequence[str]], ) -> typing.Union[typing.Any, bigframes.series.Series]

Aggregate using one or more operations over the specified axis.

See more: bigframes.series.Series.agg

bigframes.series.Series.aggregate

aggregate( func: typing.Union[str, typing.Sequence[str]], ) -> typing.Union[typing.Any, bigframes.series.Series]

Aggregate using one or more operations over the specified axis.

See more: bigframes.series.Series.aggregate

bigframes.series.Series.all

all() -> bool

Return whether all elements are True, potentially over an axis.

See more: bigframes.series.Series.all

bigframes.series.Series.any

any() -> bool

Return whether any element is True, potentially over an axis.

See more: bigframes.series.Series.any

bigframes.series.Series.apply

apply( func, by_row: typing.Union[typing.Literal["compat"], bool] = "compat", *, args: typing.Tuple = () ) -> bigframes.series.Series

Invoke function on values of a Series.

See more: bigframes.series.Series.apply

bigframes.series.Series.area

area( x: typing.Optional[typing.Hashable] = None, y: typing.Optional[typing.Hashable] = None, stacked: bool = True, **kwargs )

Draw a stacked area plot.

See more: bigframes.series.Series.area

bigframes.series.Series.argmax

argmax() -> int

Return int position of the largest value in the series.

See more: bigframes.series.Series.argmax

bigframes.series.Series.argmin

argmin() -> int

Return int position of the smallest value in the Series.

See more: bigframes.series.Series.argmin

bigframes.series.Series.astype

astype( dtype: typing.Union[ typing.Literal[ "boolean", "Float64", "Int64", "int64[pyarrow]", "string", "string[pyarrow]", "timestamp[us, tz=UTC][pyarrow]", "timestamp[us][pyarrow]", "date32[day][pyarrow]", "time64[us][pyarrow]", "decimal128(38, 9)[pyarrow]", "decimal256(76, 38)[pyarrow]", "binary[pyarrow]", "duration[us][pyarrow]", ], pandas.core.arrays.boolean.BooleanDtype, pandas.core.arrays.floating.Float64Dtype, pandas.core.arrays.integer.Int64Dtype, pandas.core.arrays.string_.StringDtype, pandas.core.dtypes.dtypes.ArrowDtype, geopandas.array.GeometryDtype, ], *, errors: typing.Literal["raise", "null"] = "raise" ) -> bigframes.series.Series

Cast a pandas object to a specified dtype dtype.

See more: bigframes.series.Series.astype

bigframes.series.Series.autocorr

autocorr(lag: int = 1) -> float

Compute the lag-N autocorrelation.

See more: bigframes.series.Series.autocorr

bigframes.series.Series.bar

bar( x: typing.Optional[typing.Hashable] = None, y: typing.Optional[typing.Hashable] = None, **kwargs )

Draw a vertical bar plot.

See more: bigframes.series.Series.bar

bigframes.series.Series.between

between(left, right, inclusive="both")

Return boolean Series equivalent to left <= series <= right.

See more: bigframes.series.Series.between

bigframes.series.Series.bfill

bfill(*, limit: typing.Optional[int] = None) -> bigframes.series.Series

Fill NA/NaN values by using the next valid observation to fill the gap.

See more: bigframes.series.Series.bfill

bigframes.series.Series.cache

cache()

Materializes the Series to a temporary table.

See more: bigframes.series.Series.cache

bigframes.series.Series.case_when

case_when(caselist) -> bigframes.series.Series

Replace values where the conditions are True.

See more: bigframes.series.Series.case_when

bigframes.series.Series.clip

clip(lower=None, upper=None)

Trim values at input threshold(s).

See more: bigframes.series.Series.clip

bigframes.series.Series.combine

combine(other, func) -> bigframes.series.Series

Combine the Series with a Series or scalar according to func.

See more: bigframes.series.Series.combine

bigframes.series.Series.combine_first

combine_first(other: bigframes.series.Series) -> bigframes.series.Series

Update null elements with value in the same location in 'other'.

See more: bigframes.series.Series.combine_first

bigframes.series.Series.copy

copy() -> bigframes.series.Series

Make a copy of this object's indices and data.

See more: bigframes.series.Series.copy

bigframes.series.Series.corr

corr(other: bigframes.series.Series, method="pearson", min_periods=None) -> float

Compute the correlation with the other Series.

See more: bigframes.series.Series.corr

bigframes.series.Series.count

count() -> int

Return number of non-NA/null observations in the Series.

See more: bigframes.series.Series.count

bigframes.series.Series.cov

cov(other: bigframes.series.Series) -> float

Compute covariance with Series, excluding missing values.

See more: bigframes.series.Series.cov

bigframes.series.Series.cummax

cummax() -> bigframes.series.Series

Return cumulative maximum over a DataFrame or Series axis.

See more: bigframes.series.Series.cummax

bigframes.series.Series.cummin

cummin() -> bigframes.series.Series

Return cumulative minimum over a DataFrame or Series axis.

See more: bigframes.series.Series.cummin

bigframes.series.Series.cumprod

cumprod() -> bigframes.series.Series

Return cumulative product over a DataFrame or Series axis.

See more: bigframes.series.Series.cumprod

bigframes.series.Series.cumsum

cumsum() -> bigframes.series.Series

Return cumulative sum over a DataFrame or Series axis.

See more: bigframes.series.Series.cumsum

bigframes.series.Series.describe

describe() -> bigframes.series.Series

Generate descriptive statistics.

See more: bigframes.series.Series.describe

bigframes.series.Series.diff

diff(periods: int = 1) -> bigframes.series.Series

First discrete difference of element.

See more: bigframes.series.Series.diff

bigframes.series.Series.div

div( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Return floating division of Series and other, element-wise (binary operator truediv).

See more: bigframes.series.Series.div

bigframes.series.Series.divide

divide( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Return floating division of Series and other, element-wise (binary operator truediv).

See more: bigframes.series.Series.divide

bigframes.series.Series.divmod

divmod(other) -> typing.Tuple[bigframes.series.Series, bigframes.series.Series]

Return integer division and modulo of Series and other, element-wise (binary operator divmod).

See more: bigframes.series.Series.divmod

bigframes.series.Series.dot

dot(other)

Compute the dot product between the Series and the columns of other.

See more: bigframes.series.Series.dot

bigframes.series.Series.drop

drop( labels: typing.Any = None, *, axis: typing.Union[int, str] = 0, index: typing.Any = None, columns: typing.Union[typing.Hashable, typing.Iterable[typing.Hashable]] = None, level: typing.Optional[typing.Union[str, int]] = None ) -> bigframes.series.Series

Return Series with specified index labels removed.

See more: bigframes.series.Series.drop

bigframes.series.Series.drop_duplicates

drop_duplicates(*, keep: str = "first") -> bigframes.series.Series

Return Series with duplicate values removed.

See more: bigframes.series.Series.drop_duplicates

bigframes.series.Series.droplevel

droplevel( level: typing.Union[str, int, typing.Sequence[typing.Union[str, int]]], axis: int | str = 0, )

Return Series with requested index / column level(s) removed.

See more: bigframes.series.Series.droplevel

bigframes.series.Series.dropna

dropna( *, axis: int = 0, inplace: bool = False, how: typing.Optional[str] = None, ignore_index: bool = False ) -> bigframes.series.Series

Return a new Series with missing values removed.

See more: bigframes.series.Series.dropna

bigframes.series.Series.duplicated

duplicated(keep: str = "first") -> bigframes.series.Series

Indicate duplicate Series values.

See more: bigframes.series.Series.duplicated

bigframes.series.Series.eq

eq(other: object) -> bigframes.series.Series

Return equal of Series and other, element-wise (binary operator eq).

See more: bigframes.series.Series.eq

bigframes.series.Series.equals

equals( other: typing.Union[bigframes.series.Series, bigframes.dataframe.DataFrame], ) -> bool

Test whether two objects contain the same elements.

See more: bigframes.series.Series.equals

bigframes.series.Series.expanding

expanding(min_periods: int = 1) -> bigframes.core.window.rolling.Window

Provide expanding window calculations.

See more: bigframes.series.Series.expanding

bigframes.series.Series.explode

explode(*, ignore_index: typing.Optional[bool] = False) -> bigframes.series.Series

Transform each element of a list-like to a row.

See more: bigframes.series.Series.explode

bigframes.series.Series.ffill

ffill(*, limit: typing.Optional[int] = None) -> bigframes.series.Series

Fill NA/NaN values by propagating the last valid observation to next valid.

See more: bigframes.series.Series.ffill

bigframes.series.Series.fillna

fillna(value=None) -> bigframes.series.Series

Fill NA (NULL in BigQuery) values using the specified method.

See more: bigframes.series.Series.fillna

bigframes.series.Series.filter

filter( items: typing.Optional[typing.Iterable] = None, like: typing.Optional[str] = None, regex: typing.Optional[str] = None, axis: typing.Optional[typing.Union[str, int]] = None, ) -> bigframes.series.Series

Subset the dataframe rows or columns according to the specified index labels.

See more: bigframes.series.Series.filter

bigframes.series.Series.floordiv

floordiv( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Return integer division of Series and other, element-wise (binary operator floordiv).

See more: bigframes.series.Series.floordiv

bigframes.series.Series.ge

ge(other) -> bigframes.series.Series

Get 'greater than or equal to' of Series and other, element-wise (binary operator ge).

See more: bigframes.series.Series.ge

bigframes.series.Series.get

get(key, default=None)

Get item from object for given key (ex: DataFrame column).

See more: bigframes.series.Series.get

bigframes.series.Series.groupby

groupby( by: typing.Union[ typing.Hashable, bigframes.series.Series, typing.Sequence[typing.Union[typing.Hashable, bigframes.series.Series]], ] = None, axis=0, level: typing.Optional[ typing.Union[int, str, typing.Sequence[int], typing.Sequence[str]] ] = None, as_index: bool = True, *, dropna: bool = True ) -> bigframes.core.groupby.series_group_by.SeriesGroupBy

Group Series using a mapper or by a Series of columns.

See more: bigframes.series.Series.groupby

bigframes.series.Series.gt

gt(other) -> bigframes.series.Series

Return Greater than of series and other, element-wise (binary operator gt).

See more: bigframes.series.Series.gt

bigframes.series.Series.head

head(n: int = 5) -> bigframes.series.Series

Return the first n rows.

See more: bigframes.series.Series.head

bigframes.series.Series.hist

hist(by: typing.Optional[typing.Sequence[str]] = None, bins: int = 10, **kwargs)

Draw one histogram of the DataFrame’s columns.

See more: bigframes.series.Series.hist

bigframes.series.Series.idxmax

idxmax() -> typing.Hashable

Return the row label of the maximum value.

See more: bigframes.series.Series.idxmax

bigframes.series.Series.idxmin

idxmin() -> typing.Hashable

Return the row label of the minimum value.

See more: bigframes.series.Series.idxmin

bigframes.series.Series.interpolate

interpolate(method: str = "linear") -> bigframes.series.Series

Fill NaN values using an interpolation method.

See more: bigframes.series.Series.interpolate

bigframes.series.Series.isin

isin(values) -> bigframes.series.Series

Whether elements in Series are contained in values.

See more: bigframes.series.Series.isin

bigframes.series.Series.isna

isna() -> bigframes.series.Series

Detect missing (NULL) values.

See more: bigframes.series.Series.isna

bigframes.series.Series.isnull

isnull() -> bigframes.series.Series

Detect missing (NULL) values.

See more: bigframes.series.Series.isnull

bigframes.series.Series.item

item()

Return the first element of the underlying data as a Python scalar.

See more: bigframes.series.Series.item

bigframes.series.Series.items

items()

Lazily iterate over (index, value) tuples.

See more: bigframes.series.Series.items

bigframes.series.Series.keys

keys() -> bigframes.core.indexes.base.Index

Return alias for index.

See more: bigframes.series.Series.keys

bigframes.series.Series.kurt

kurt()

Return unbiased kurtosis over requested axis.

See more: bigframes.series.Series.kurt

bigframes.series.Series.kurtosis

kurtosis()

Return unbiased kurtosis over requested axis.

See more: bigframes.series.Series.kurtosis

bigframes.series.Series.le

le(other) -> bigframes.series.Series

Get 'less than or equal to' of Series and other, element-wise (binary operator le).

See more: bigframes.series.Series.le

bigframes.series.Series.line

line( x: typing.Optional[typing.Hashable] = None, y: typing.Optional[typing.Hashable] = None, **kwargs )

Plot Series or DataFrame as lines.

See more: bigframes.series.Series.line

bigframes.series.Series.lt

lt(other) -> bigframes.series.Series

Get 'less than' of Series and other, element-wise (binary operator lt).

See more: bigframes.series.Series.lt

bigframes.series.Series.map

map( arg: typing.Union[typing.Mapping, bigframes.series.Series, typing.Callable], na_action: typing.Optional[str] = None, *, verify_integrity: bool = False ) -> bigframes.series.Series

Map values of Series according to an input mapping or function.

See more: bigframes.series.Series.map

bigframes.series.Series.mask

mask(cond, other=None) -> bigframes.series.Series

Replace values where the condition is True.

See more: bigframes.series.Series.mask

bigframes.series.Series.max

max() -> typing.Any

Return the maximum of the values over the requested axis.

See more: bigframes.series.Series.max

bigframes.series.Series.mean

mean() -> float

Return the mean of the values over the requested axis.

See more: bigframes.series.Series.mean

bigframes.series.Series.median

median(*, exact: bool = True) -> float

Return the median of the values over the requested axis.

See more: bigframes.series.Series.median

bigframes.series.Series.min

min() -> typing.Any

Return the maximum of the values over the requested axis.

See more: bigframes.series.Series.min

bigframes.series.Series.mod

mod(other) -> bigframes.series.Series

Return modulo of Series and other, element-wise (binary operator mod).

See more: bigframes.series.Series.mod

bigframes.series.Series.mode

mode() -> bigframes.series.Series

Return the mode(s) of the Series.

See more: bigframes.series.Series.mode

bigframes.series.Series.mul

mul(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Return multiplication of Series and other, element-wise (binary operator mul).

See more: bigframes.series.Series.mul

bigframes.series.Series.multiply

multiply(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Return multiplication of Series and other, element-wise (binary operator mul).

See more: bigframes.series.Series.multiply

bigframes.series.Series.ne

ne(other: object) -> bigframes.series.Series

Return not equal of Series and other, element-wise (binary operator ne).

See more: bigframes.series.Series.ne

bigframes.series.Series.nlargest

nlargest(n: int = 5, keep: str = "first") -> bigframes.series.Series

Return the largest n elements.

See more: bigframes.series.Series.nlargest

bigframes.series.Series.notna

notna() -> bigframes.series.Series

Detect existing (non-missing) values.

See more: bigframes.series.Series.notna

bigframes.series.Series.notnull

notnull() -> bigframes.series.Series

Detect existing (non-missing) values.

See more: bigframes.series.Series.notnull

bigframes.series.Series.nsmallest

nsmallest(n: int = 5, keep: str = "first") -> bigframes.series.Series

Return the smallest n elements.

See more: bigframes.series.Series.nsmallest

bigframes.series.Series.nunique

nunique() -> int

Return number of unique elements in the object.

See more: bigframes.series.Series.nunique

bigframes.series.Series.pad

pad(*, limit: typing.Optional[int] = None) -> bigframes.series.Series

Fill NA/NaN values by propagating the last valid observation to next valid.

See more: bigframes.series.Series.pad

bigframes.series.Series.pct_change

pct_change(periods: int = 1) -> bigframes.series.Series

Fractional change between the current and a prior element.

See more: bigframes.series.Series.pct_change

bigframes.series.Series.peek

peek( n: int = 5, *, force: bool = True, allow_large_results=None ) -> pandas.core.series.Series

Preview n arbitrary elements from the series without guarantees about row selection or ordering.

See more: bigframes.series.Series.peek

bigframes.series.Series.pipe

pipe(func: Callable[..., T] | tuple[Callable[..., T], str], *args, **kwargs) -> T

Apply chainable functions that expect Series or DataFrames.

See more: bigframes.series.Series.pipe

bigframes.series.Series.pow

pow(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Return Exponential power of series and other, element-wise (binary operator pow).

See more: bigframes.series.Series.pow

bigframes.series.Series.prod

prod() -> float

Return the product of the values over the requested axis.

See more: bigframes.series.Series.prod

bigframes.series.Series.product

product() -> float

Return the product of the values over the requested axis.

See more: bigframes.series.Series.product

bigframes.series.Series.quantile

quantile( q: typing.Union[float, typing.Sequence[float]] = 0.5, ) -> typing.Union[bigframes.series.Series, float]

Return value at the given quantile.

See more: bigframes.series.Series.quantile

bigframes.series.Series.radd

radd( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Return addition of Series and other, element-wise (binary operator radd).

See more: bigframes.series.Series.radd

bigframes.series.Series.rank

rank( axis=0, method: str = "average", numeric_only=False, na_option: str = "keep", ascending: bool = True, pct: bool = False, ) -> bigframes.series.Series

Compute numerical data ranks (1 through n) along axis.

See more: bigframes.series.Series.rank

bigframes.series.Series.rdiv

rdiv( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Return floating division of Series and other, element-wise (binary operator rtruediv).

See more: bigframes.series.Series.rdiv

bigframes.series.Series.rdivmod

rdivmod(other) -> typing.Tuple[bigframes.series.Series, bigframes.series.Series]

Return integer division and modulo of Series and other, element-wise (binary operator rdivmod).

See more: bigframes.series.Series.rdivmod

bigframes.series.Series.reindex

reindex(index=None, *, validate: typing.Optional[bool] = None)

Conform Series to new index with optional filling logic.

See more: bigframes.series.Series.reindex

bigframes.series.Series.reindex_like

reindex_like( other: bigframes.series.Series, *, validate: typing.Optional[bool] = None )

Return an object with matching indices as other object.

See more: bigframes.series.Series.reindex_like

bigframes.series.Series.rename

Alter Series index labels or name.

See more: bigframes.series.Series.rename

bigframes.series.Series.rename_axis

Set the name of the axis for the index or columns.

See more: bigframes.series.Series.rename_axis

bigframes.series.Series.reorder_levels

reorder_levels( order: typing.Union[str, int, typing.Sequence[typing.Union[str, int]]], axis: int | str = 0, )

Rearrange index levels using input order.

See more: bigframes.series.Series.reorder_levels

bigframes.series.Series.replace

replace(to_replace: typing.Any, value: typing.Any = None, *, regex: bool = False)

Replace values given in to_replace with value.

See more: bigframes.series.Series.replace

bigframes.series.Series.resample

resample( rule: str, *, closed: typing.Optional[typing.Literal["right", "left"]] = None, label: typing.Optional[typing.Literal["right", "left"]] = None, level: typing.Optional[ typing.Union[str, int, typing.Sequence[typing.Union[str, int]]] ] = None, origin: typing.Union[ pandas._libs.tslibs.timestamps.Timestamp, datetime.datetime, numpy.datetime64, int, float, str, typing.Literal["epoch", "start", "start_day", "end", "end_day"], ] = "start_day" ) -> bigframes.core.groupby.series_group_by.SeriesGroupBy

Resample time-series data.

See more: bigframes.series.Series.resample

bigframes.series.Series.reset_index

Generate a new DataFrame or Series with the index reset.

See more: bigframes.series.Series.reset_index

bigframes.series.Series.rfloordiv

rfloordiv( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Return integer division of Series and other, element-wise (binary operator rfloordiv).

See more: bigframes.series.Series.rfloordiv

bigframes.series.Series.rmod

rmod(other) -> bigframes.series.Series

Return modulo of Series and other, element-wise (binary operator mod).

See more: bigframes.series.Series.rmod

bigframes.series.Series.rmul

rmul(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Return multiplication of Series and other, element-wise (binary operator mul).

See more: bigframes.series.Series.rmul

bigframes.series.Series.rolling

rolling( window: ( int | pandas._libs.tslibs.timedeltas.Timedelta | numpy.timedelta64 | datetime.timedelta | str ), min_periods: int | None = None, closed: typing.Literal["right", "left", "both", "neither"] = "right", ) -> bigframes.core.window.rolling.Window

Provide rolling window calculations.

See more: bigframes.series.Series.rolling

bigframes.series.Series.round

round(decimals=0) -> bigframes.series.Series

Round each value in a Series to the given number of decimals.

See more: bigframes.series.Series.round

bigframes.series.Series.rpow

rpow(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Return Exponential power of series and other, element-wise (binary operator rpow).

See more: bigframes.series.Series.rpow

bigframes.series.Series.rsub

rsub(other) -> bigframes.series.Series

Return subtraction of Series and other, element-wise (binary operator rsub).

See more: bigframes.series.Series.rsub

bigframes.series.Series.rtruediv

rtruediv( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Return floating division of Series and other, element-wise (binary operator rtruediv).

See more: bigframes.series.Series.rtruediv

bigframes.series.Series.sample

sample( n: typing.Optional[int] = None, frac: typing.Optional[float] = None, *, random_state: typing.Optional[int] = None, sort: typing.Optional[typing.Union[bool, typing.Literal["random"]]] = "random" ) -> bigframes.series.Series

Return a random sample of items from an axis of object.

See more: bigframes.series.Series.sample

bigframes.series.Series.shift

shift(periods: int = 1) -> bigframes.series.Series

Shift index by desired number of periods.

See more: bigframes.series.Series.shift

bigframes.series.Series.skew

skew()

Return unbiased skew over requested axis.

See more: bigframes.series.Series.skew

bigframes.series.Series.sort_index

Sort Series by index labels.

See more: bigframes.series.Series.sort_index

bigframes.series.Series.sort_values

Sort by the values.

See more: bigframes.series.Series.sort_values

bigframes.series.Series.std

std() -> float

Return sample standard deviation over requested axis.

See more: bigframes.series.Series.std

bigframes.series.Series.sub

sub(other) -> bigframes.series.Series

Return subtraction of Series and other, element-wise (binary operator sub).

See more: bigframes.series.Series.sub

bigframes.series.Series.subtract

subtract(other) -> bigframes.series.Series

Return subtraction of Series and other, element-wise (binary operator sub).

See more: bigframes.series.Series.subtract

bigframes.series.Series.sum

sum() -> float

Return the sum of the values over the requested axis.

See more: bigframes.series.Series.sum

bigframes.series.Series.swaplevel

swaplevel(i: int = -2, j: int = -1)

Swap levels i and j in a MultiIndex.

See more: bigframes.series.Series.swaplevel

bigframes.series.Series.tail

tail(n: int = 5) -> bigframes.series.Series

Return the last n rows.

See more: bigframes.series.Series.tail

bigframes.series.Series.take

take( indices: typing.Sequence[int], axis: int | str | None = 0, **kwargs ) -> bigframes.series.Series

Return the elements in the given positional indices along an axis.

See more: bigframes.series.Series.take

bigframes.series.Series.to_csv

to_csv( path_or_buf=None, sep=",", *, header: bool = True, index: bool = True, allow_large_results: typing.Optional[bool] = None ) -> typing.Optional[str]

Write object to a comma-separated values (csv) file on Cloud Storage.

See more: bigframes.series.Series.to_csv

bigframes.series.Series.to_dict

to_dict( into: type[dict] = dict, *, allow_large_results: typing.Optional[bool] = None ) -> typing.Mapping

Convert Series to {label -> value} dict or dict-like object.

See more: bigframes.series.Series.to_dict

bigframes.series.Series.to_excel

to_excel( excel_writer, sheet_name="Sheet1", *, allow_large_results=None, **kwargs ) -> None

Write Series to an Excel sheet.

See more: bigframes.series.Series.to_excel

bigframes.series.Series.to_frame

to_frame(name: typing.Hashable = None) -> bigframes.dataframe.DataFrame

Convert Series to DataFrame.

See more: bigframes.series.Series.to_frame

bigframes.series.Series.to_json

to_json( path_or_buf=None, orient: typing.Optional[ typing.Literal["split", "records", "index", "columns", "values", "table"] ] = None, *, lines: bool = False, index: bool = True, allow_large_results: typing.Optional[bool] = None ) -> typing.Optional[str]

Convert the object to a JSON string, written to Cloud Storage.

See more: bigframes.series.Series.to_json

bigframes.series.Series.to_latex

to_latex( buf=None, columns=None, header=True, index=True, *, allow_large_results=None, **kwargs ) -> typing.Optional[str]

Render object to a LaTeX tabular, longtable, or nested table.

See more: bigframes.series.Series.to_latex

bigframes.series.Series.to_list

to_list(*, allow_large_results: typing.Optional[bool] = None) -> list

Return a list of the values.

See more: bigframes.series.Series.to_list

bigframes.series.Series.to_markdown

to_markdown( buf: typing.Optional[typing.IO[str]] = None, mode: str = "wt", index: bool = True, *, allow_large_results: typing.Optional[bool] = None, **kwargs ) -> typing.Optional[str]

Print Series in Markdown-friendly format.

See more: bigframes.series.Series.to_markdown

bigframes.series.Series.to_numpy

to_numpy( dtype=None, copy=False, na_value=_NoDefault.no_default, *, allow_large_results=None, **kwargs ) -> numpy.ndarray

A NumPy ndarray representing the values in this Series or Index.

See more: bigframes.series.Series.to_numpy

bigframes.series.Series.to_pandas

to_pandas( max_download_size: typing.Optional[int] = None, sampling_method: typing.Optional[str] = None, random_state: typing.Optional[int] = None, *, ordered: bool = True, dry_run: bool = False, allow_large_results: typing.Optional[bool] = None ) -> pandas.core.series.Series

Writes Series to pandas Series.

See more: bigframes.series.Series.to_pandas

bigframes.series.Series.to_pandas_batches

to_pandas_batches( page_size: typing.Optional[int] = None, max_results: typing.Optional[int] = None, *, allow_large_results: typing.Optional[bool] = None ) -> typing.Iterable[pandas.core.series.Series]

Stream Series results to an iterable of pandas Series.

See more: bigframes.series.Series.to_pandas_batches

bigframes.series.Series.to_pickle

to_pickle(path, *, allow_large_results=None, **kwargs) -> None

Pickle (serialize) object to file.

See more: bigframes.series.Series.to_pickle

bigframes.series.Series.to_string

to_string( buf=None, na_rep="NaN", float_format=None, header=True, index=True, length=False, dtype=False, name=False, max_rows=None, min_rows=None, *, allow_large_results=None ) -> typing.Optional[str]

Render a string representation of the Series.

See more: bigframes.series.Series.to_string

bigframes.series.Series.to_xarray

to_xarray(*, allow_large_results: typing.Optional[bool] = None)

Return an xarray object from the pandas object.

See more: bigframes.series.Series.to_xarray

bigframes.series.Series.tolist

tolist(*, allow_large_results: typing.Optional[bool] = None) -> list

Return a list of the values.

See more: bigframes.series.Series.tolist

bigframes.series.Series.transpose

transpose() -> bigframes.series.Series

Return the transpose, which is by definition self.

See more: bigframes.series.Series.transpose

bigframes.series.Series.truediv

truediv( other: ( float | int | pandas._libs.tslibs.timedeltas.Timedelta | bigframes.series.Series ), ) -> bigframes.series.Series

Return floating division of Series and other, element-wise (binary operator truediv).

See more: bigframes.series.Series.truediv

bigframes.series.Series.unique

unique(keep_order=True) -> bigframes.series.Series

Return unique values of Series object.

See more: bigframes.series.Series.unique

bigframes.series.Series.unstack

unstack( level: typing.Union[str, int, typing.Sequence[typing.Union[str, int]]] = -1, )

Unstack, also known as pivot, Series with MultiIndex to produce DataFrame.

See more: bigframes.series.Series.unstack

bigframes.series.Series.update

update( other: typing.Union[bigframes.series.Series, typing.Sequence, typing.Mapping], ) -> None

Modify Series in place using values from passed Series.

See more: bigframes.series.Series.update

bigframes.series.Series.value_counts

value_counts( normalize: bool = False, sort: bool = True, ascending: bool = False, *, dropna: bool = True )

Return a Series containing counts of unique values.

See more: bigframes.series.Series.value_counts

bigframes.series.Series.var

var() -> float

Return unbiased variance over requested axis.

See more: bigframes.series.Series.var

bigframes.series.Series.where

where(cond, other=None)

Replace values where the condition is False.

See more: bigframes.series.Series.where

bigframes.session.Session.DataFrame

DataFrame(*args, **kwargs)

Constructs a DataFrame.

See more: bigframes.session.Session.DataFrame

bigframes.session.Session.Index

Index(*args, **kwargs)

Constructs a Index.

See more: bigframes.session.Session.Index

bigframes.session.Session.Series

Series(*args, **kwargs)

Constructs a Series.

See more: bigframes.session.Session.Series

bigframes.session.Session.__del__

__del__()

Automatic cleanup of internal resources.

See more: bigframes.session.Session.del

bigframes.session.Session.__enter__

__enter__()

Enter the runtime context of the Session object.

See more: bigframes.session.Session.enter

bigframes.session.Session.__exit__

__exit__(*_)

Exit the runtime context of the Session object.

See more: bigframes.session.Session.exit

bigframes.session.Session.close

close()

Delete resources that were created with this session's session_id.

See more: bigframes.session.Session.close

bigframes.session.Session.cut

cut(*args, **kwargs) -> bigframes.series.Series

Cuts a BigQuery DataFrames object.

See more: bigframes.session.Session.cut

bigframes.session.Session.deploy_remote_function

deploy_remote_function(func, **kwargs)

Orchestrates the creation of a BigQuery remote function that deploys immediately.

See more: bigframes.session.Session.deploy_remote_function

bigframes.session.Session.deploy_udf

deploy_udf(func, **kwargs)

Orchestrates the creation of a BigQuery UDF that deploys immediately.

See more: bigframes.session.Session.deploy_udf

bigframes.session.Session.from_glob_path

from_glob_path( path: str, *, connection: Optional[str] = None, name: Optional[str] = None ) -> dataframe.DataFrame

Create a BigFrames DataFrame that contains a BigFrames Blob column from a global wildcard path.

See more: bigframes.session.Session.from_glob_path

bigframes.session.Session.read_arrow

read_arrow(pa_table: pyarrow.lib.Table) -> bigframes.dataframe.DataFrame

Load a PyArrow Table to a BigQuery DataFrames DataFrame.

See more: bigframes.session.Session.read_arrow

bigframes.session.Session.read_csv

read_csv( filepath_or_buffer: str | IO["bytes"], *, sep: Optional[str] = ",", header: Optional[int] = 0, names: Optional[ Union[MutableSequence[Any], np.ndarray[Any, Any], Tuple[Any, ...], range] ] = None, index_col: Optional[ Union[ int, str, Sequence[Union[str, int]], bigframes.enums.DefaultIndexKind, Literal[False], ] ] = None, usecols: Optional[ Union[ MutableSequence[str], Tuple[str, ...], Sequence[int], pandas.Series, pandas.Index, np.ndarray[Any, Any], Callable[[Any], bool], ] ] = None, dtype: Optional[Dict] = None, engine: Optional[ Literal["c", "python", "pyarrow", "python-fwf", "bigquery"] ] = None, encoding: Optional[str] = None, write_engine: constants.WriteEngineType = "default", **kwargs ) -> dataframe.DataFrame

Loads data from a comma-separated values (csv) file into a DataFrame.

See more: bigframes.session.Session.read_csv

bigframes.session.Session.read_gbq

Loads a DataFrame from BigQuery.

See more: bigframes.session.Session.read_gbq

bigframes.session.Session.read_gbq_function

read_gbq_function(function_name: str, is_row_processor: bool = False)

Loads a BigQuery function from BigQuery.

See more: bigframes.session.Session.read_gbq_function

bigframes.session.Session.read_gbq_model

read_gbq_model(model_name: str)

Loads a BigQuery ML model from BigQuery.

See more: bigframes.session.Session.read_gbq_model

bigframes.session.Session.read_gbq_object_table

read_gbq_object_table( object_table: str, *, name: Optional[str] = None ) -> dataframe.DataFrame

Read an existing object table to create a BigFrames Blob DataFrame.

See more: bigframes.session.Session.read_gbq_object_table

bigframes.session.Session.read_gbq_query

Turn a SQL query into a DataFrame.

See more: bigframes.session.Session.read_gbq_query

bigframes.session.Session.read_gbq_table

Turn a BigQuery table into a DataFrame.

See more: bigframes.session.Session.read_gbq_table

bigframes.session.Session.read_gbq_table_streaming

read_gbq_table_streaming(table: str) -> streaming_dataframe.StreamingDataFrame

Turn a BigQuery table into a StreamingDataFrame.

See more: bigframes.session.Session.read_gbq_table_streaming

bigframes.session.Session.read_json

read_json( path_or_buf: str | IO["bytes"], *, orient: Literal[ "split", "records", "index", "columns", "values", "table" ] = "columns", dtype: Optional[Dict] = None, encoding: Optional[str] = None, lines: bool = False, engine: Literal["ujson", "pyarrow", "bigquery"] = "ujson", write_engine: constants.WriteEngineType = "default", **kwargs ) -> dataframe.DataFrame

Convert a JSON string to DataFrame object.

See more: bigframes.session.Session.read_json

bigframes.session.Session.read_pandas

Loads DataFrame from a pandas DataFrame.

See more: bigframes.session.Session.read_pandas

bigframes.session.Session.read_parquet

read_parquet( path: str | IO["bytes"], *, engine: str = "auto", write_engine: constants.WriteEngineType = "default" ) -> dataframe.DataFrame

Load a Parquet object from the file path (local or Cloud Storage), returning a DataFrame.

See more: bigframes.session.Session.read_parquet

bigframes.session.Session.read_pickle

read_pickle( filepath_or_buffer: FilePath | ReadPickleBuffer, compression: CompressionOptions = "infer", storage_options: StorageOptions = None, *, write_engine: constants.WriteEngineType = "default" )

Load pickled BigFrames object (or any object) from file.

See more: bigframes.session.Session.read_pickle

bigframes.session.Session.remote_function

remote_function( input_types: typing.Union[None, type, typing.Sequence[type]] = None, output_type: typing.Optional[type] = None, dataset: typing.Optional[str] = None, *, bigquery_connection: typing.Optional[str] = None, reuse: bool = True, name: typing.Optional[str] = None, packages: typing.Optional[typing.Sequence[str]] = None, cloud_function_service_account: str, cloud_function_kms_key_name: typing.Optional[str] = None, cloud_function_docker_repository: typing.Optional[str] = None, max_batching_rows: typing.Optional[int] = 1000, cloud_function_timeout: typing.Optional[int] = 600, cloud_function_max_instances: typing.Optional[int] = None, cloud_function_vpc_connector: typing.Optional[str] = None, cloud_function_vpc_connector_egress_settings: typing.Optional[ typing.Literal["all", "private-ranges-only", "unspecified"] ] = None, cloud_function_memory_mib: typing.Optional[int] = 1024, cloud_function_ingress_settings: typing.Literal[ "all", "internal-only", "internal-and-gclb" ] = "internal-only", cloud_build_service_account: typing.Optional[str] = None )

Decorator to turn a user defined function into a BigQuery remote function.

See more: bigframes.session.Session.remote_function

bigframes.session.Session.to_datetime

to_datetime( *args, **kwargs ) -> typing.Union[ pandas._libs.tslibs.timestamps.Timestamp, datetime.datetime, bigframes.series.Series ]

Converts a BigQuery DataFrames object to datetime dtype.

See more: bigframes.session.Session.to_datetime

bigframes.session.Session.to_timedelta

to_timedelta(*args, **kwargs)

Converts a BigQuery DataFrames object to timedelta/duration dtype.

See more: bigframes.session.Session.to_timedelta

bigframes.session.Session.udf

udf( *, input_types: typing.Union[None, type, typing.Sequence[type]] = None, output_type: typing.Optional[type] = None, dataset: str, bigquery_connection: typing.Optional[str] = None, name: str, packages: typing.Optional[typing.Sequence[str]] = None, max_batching_rows: typing.Optional[int] = None, container_cpu: typing.Optional[float] = None, container_memory: typing.Optional[str] = None )

Decorator to turn a Python user defined function (udf) into a BigQuery managed user-defined function.

See more: bigframes.session.Session.udf

bigframes.streaming.dataframe.StreamingDataFrame.__getitem__

__getitem__(*args, **kwargs)

Gets the specified column(s) from the StreamingDataFrame.

See more: bigframes.streaming.dataframe.StreamingDataFrame.getitem

bigframes.streaming.dataframe.StreamingDataFrame.__repr__

__repr__(*args, **kwargs)

Converts a StreamingDataFrame to a string.

See more: bigframes.streaming.dataframe.StreamingDataFrame.repr

bigframes.streaming.dataframe.StreamingDataFrame.__setitem__

__setitem__(*args, **kwargs)

Modify or insert a column into the StreamingDataFrame.

See more: bigframes.streaming.dataframe.StreamingDataFrame.setitem

bigframes.streaming.dataframe.StreamingDataFrame.rename

rename(*args, **kwargs)

bigframes.streaming.dataframe.StreamingDataFrame.to_bigtable

to_bigtable( *, instance: str, table: str, service_account_email: typing.Optional[str] = None, app_profile: typing.Optional[str] = None, truncate: bool = False, overwrite: bool = False, auto_create_column_families: bool = False, bigtable_options: typing.Optional[dict] = None, job_id: typing.Optional[str] = None, job_id_prefix: typing.Optional[str] = None, start_timestamp: typing.Optional[ typing.Union[int, float, str, datetime.datetime, datetime.date] ] = None, end_timestamp: typing.Optional[ typing.Union[int, float, str, datetime.datetime, datetime.date] ] = None ) -> google.cloud.bigquery.job.query.QueryJob

Export the StreamingDataFrame as a continue job and returns a QueryJob object for some management functionality.

See more: bigframes.streaming.dataframe.StreamingDataFrame.to_bigtable

bigframes.streaming.dataframe.StreamingDataFrame.to_pubsub

to_pubsub( *, topic: str, service_account_email: str, job_id: typing.Optional[str] = None, job_id_prefix: typing.Optional[str] = None, start_timestamp: typing.Optional[ typing.Union[int, float, str, datetime.datetime, datetime.date] ] = None ) -> google.cloud.bigquery.job.query.QueryJob

Export the StreamingDataFrame as a continue job and returns a QueryJob object for some management functionality.

See more: bigframes.streaming.dataframe.StreamingDataFrame.to_pubsub