You can use Sensitive Data Protection to compute numerical and categorical numerical statistics for individual columns in BigQuery tables. Sensitive Data Protection can calculate the following:
- The column's minimum value
- The column's maximum value
- Quantile values for the column
- A histogram of value frequencies in the column
Compute numerical statistics
You can determine minimum, maximum, and quantile values for an individual BigQuery column. To calculate these values, you configure a DlpJob, setting the NumericalStatsConfig privacy metric to the name of the column to scan. When you run the job, Sensitive Data Protection computes statistics for the given column, returning its results in the NumericalStatsResult object. Sensitive Data Protection can compute statistics for the following number types:
- integer
- float
- date
- datetime
- timestamp
- time
The statistics that a scan run returns include the minimum value, the maximum value, and 99 quantile values that partition the set of field values into 100 equal sized buckets.
Code examples
Following is sample code in several languages that demonstrates how to use Sensitive Data Protection to calculate numerical statistics.
C#
To learn how to install and use the client library for Sensitive Data Protection, see Sensitive Data Protection client libraries.
To authenticate to Sensitive Data Protection, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.
using Google.Api.Gax.ResourceNames; using Google.Cloud.Dlp.V2; using Google.Cloud.PubSub.V1; using Newtonsoft.Json; using System; using System.Collections.Generic; using System.Linq; using System.Threading; using System.Threading.Tasks; using static Google.Cloud.Dlp.V2.Action.Types; using static Google.Cloud.Dlp.V2.PrivacyMetric.Types; public class RiskAnalysisCreateNumericalStats { public static AnalyzeDataSourceRiskDetails.Types.NumericalStatsResult NumericalStats( string callingProjectId, string tableProjectId, string datasetId, string tableId, string topicId, string subscriptionId, string columnName) { var dlp = DlpServiceClient.Create(); // Construct + submit the job var config = new RiskAnalysisJobConfig { PrivacyMetric = new PrivacyMetric { NumericalStatsConfig = new NumericalStatsConfig { Field = new FieldId { Name = columnName } } }, SourceTable = new BigQueryTable { ProjectId = tableProjectId, DatasetId = datasetId, TableId = tableId }, Actions = { new Google.Cloud.Dlp.V2.Action { PubSub = new PublishToPubSub { Topic = $"projects/{callingProjectId}/topics/{topicId}" } } } }; var submittedJob = dlp.CreateDlpJob( new CreateDlpJobRequest { ParentAsProjectName = new ProjectName(callingProjectId), RiskJob = config }); // Listen to pub/sub for the job var subscriptionName = new SubscriptionName(callingProjectId, subscriptionId); var subscriber = SubscriberClient.CreateAsync( subscriptionName).Result; // SimpleSubscriber runs your message handle function on multiple // threads to maximize throughput. var done = new ManualResetEventSlim(false); subscriber.StartAsync((PubsubMessage message, CancellationToken cancel) => { if (message.Attributes["DlpJobName"] == submittedJob.Name) { Thread.Sleep(500); // Wait for DLP API results to become consistent done.Set(); return Task.FromResult(SubscriberClient.Reply.Ack); } else { return Task.FromResult(SubscriberClient.Reply.Nack); } }); done.Wait(TimeSpan.FromMinutes(10)); // 10 minute timeout; may not work for large jobs subscriber.StopAsync(CancellationToken.None).Wait(); // Process results var resultJob = dlp.GetDlpJob( new GetDlpJobRequest { DlpJobName = DlpJobName.Parse(submittedJob.Name) }); var result = resultJob.RiskDetails.NumericalStatsResult; // 'UnpackValue(x)' is a prettier version of 'x.toString()' Console.WriteLine($"Value Range: [{UnpackValue(result.MinValue)}, {UnpackValue(result.MaxValue)}]"); var lastValue = string.Empty; for (var quantile = 0; quantile < result.QuantileValues.Count; quantile++) { var currentValue = UnpackValue(result.QuantileValues[quantile]); if (lastValue != currentValue) { Console.WriteLine($"Value at {quantile + 1}% quantile: {currentValue}"); } lastValue = currentValue; } return result; } public static string UnpackValue(Value protoValue) { var jsonValue = JsonConvert.DeserializeObject<Dictionary<string, object>>(protoValue.ToString()); return jsonValue.Values.ElementAt(0).ToString(); } }Go
To learn how to install and use the client library for Sensitive Data Protection, see Sensitive Data Protection client libraries.
To authenticate to Sensitive Data Protection, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.
import ( "context" "fmt" "io" "time" dlp "cloud.google.com/go/dlp/apiv2" "cloud.google.com/go/dlp/apiv2/dlppb" "cloud.google.com/go/pubsub" ) // riskNumerical computes the numerical risk of the given column. func riskNumerical(w io.Writer, projectID, dataProject, pubSubTopic, pubSubSub, datasetID, tableID, columnName string) error { // projectID := "my-project-id" // dataProject := "bigquery-public-data" // pubSubTopic := "dlp-risk-sample-topic" // pubSubSub := "dlp-risk-sample-sub" // datasetID := "nhtsa_traffic_fatalities" // tableID := "accident_2015" // columnName := "state_number" ctx := context.Background() client, err := dlp.NewClient(ctx) if err != nil { return fmt.Errorf("dlp.NewClient: %w", err) } // Create a PubSub Client used to listen for when the inspect job finishes. pubsubClient, err := pubsub.NewClient(ctx, projectID) if err != nil { return err } defer pubsubClient.Close() // Create a PubSub subscription we can use to listen for messages. // Create the Topic if it doesn't exist. t := pubsubClient.Topic(pubSubTopic) topicExists, err := t.Exists(ctx) if err != nil { return err } if !topicExists { if t, err = pubsubClient.CreateTopic(ctx, pubSubTopic); err != nil { return err } } // Create the Subscription if it doesn't exist. s := pubsubClient.Subscription(pubSubSub) subExists, err := s.Exists(ctx) if err != nil { return err } if !subExists { if s, err = pubsubClient.CreateSubscription(ctx, pubSubSub, pubsub.SubscriptionConfig{Topic: t}); err != nil { return err } } // topic is the PubSub topic string where messages should be sent. topic := "projects/" + projectID + "/topics/" + pubSubTopic // Create a configured request. req := &dlppb.CreateDlpJobRequest{ Parent: fmt.Sprintf("projects/%s/locations/global", projectID), Job: &dlppb.CreateDlpJobRequest_RiskJob{ RiskJob: &dlppb.RiskAnalysisJobConfig{ // PrivacyMetric configures what to compute. PrivacyMetric: &dlppb.PrivacyMetric{ Type: &dlppb.PrivacyMetric_NumericalStatsConfig_{ NumericalStatsConfig: &dlppb.PrivacyMetric_NumericalStatsConfig{ Field: &dlppb.FieldId{ Name: columnName, }, }, }, }, // SourceTable describes where to find the data. SourceTable: &dlppb.BigQueryTable{ ProjectId: dataProject, DatasetId: datasetID, TableId: tableID, }, // Send a message to PubSub using Actions. Actions: []*dlppb.Action{ { Action: &dlppb.Action_PubSub{ PubSub: &dlppb.Action_PublishToPubSub{ Topic: topic, }, }, }, }, }, }, } // Create the risk job. j, err := client.CreateDlpJob(ctx, req) if err != nil { return fmt.Errorf("CreateDlpJob: %w", err) } fmt.Fprintf(w, "Created job: %v\n", j.GetName()) // Wait for the risk job to finish by waiting for a PubSub message. // This only waits for 10 minutes. For long jobs, consider using a truly // asynchronous execution model such as Cloud Functions. ctx, cancel := context.WithTimeout(ctx, 10*time.Minute) defer cancel() err = s.Receive(ctx, func(ctx context.Context, msg *pubsub.Message) { // If this is the wrong job, do not process the result. if msg.Attributes["DlpJobName"] != j.GetName() { msg.Nack() return } msg.Ack() time.Sleep(500 * time.Millisecond) resp, err := client.GetDlpJob(ctx, &dlppb.GetDlpJobRequest{ Name: j.GetName(), }) if err != nil { fmt.Fprintf(w, "GetDlpJob: %v", err) return } n := resp.GetRiskDetails().GetNumericalStatsResult() fmt.Fprintf(w, "Value range: [%v, %v]\n", n.GetMinValue(), n.GetMaxValue()) var tmp string for p, v := range n.GetQuantileValues() { if v.String() != tmp { fmt.Fprintf(w, "Value at %v quantile: %v\n", p, v) tmp = v.String() } } // Stop listening for more messages. cancel() }) if err != nil { return fmt.Errorf("Recieve: %w", err) } return nil } Java
To learn how to install and use the client library for Sensitive Data Protection, see Sensitive Data Protection client libraries.
To authenticate to Sensitive Data Protection, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.
import com.google.api.core.SettableApiFuture; import com.google.cloud.dlp.v2.DlpServiceClient; import com.google.cloud.pubsub.v1.AckReplyConsumer; import com.google.cloud.pubsub.v1.MessageReceiver; import com.google.cloud.pubsub.v1.Subscriber; import com.google.privacy.dlp.v2.Action; import com.google.privacy.dlp.v2.Action.PublishToPubSub; import com.google.privacy.dlp.v2.AnalyzeDataSourceRiskDetails.NumericalStatsResult; import com.google.privacy.dlp.v2.BigQueryTable; import com.google.privacy.dlp.v2.CreateDlpJobRequest; import com.google.privacy.dlp.v2.DlpJob; import com.google.privacy.dlp.v2.FieldId; import com.google.privacy.dlp.v2.GetDlpJobRequest; import com.google.privacy.dlp.v2.LocationName; import com.google.privacy.dlp.v2.PrivacyMetric; import com.google.privacy.dlp.v2.PrivacyMetric.NumericalStatsConfig; import com.google.privacy.dlp.v2.RiskAnalysisJobConfig; import com.google.privacy.dlp.v2.Value; import com.google.pubsub.v1.ProjectSubscriptionName; import com.google.pubsub.v1.ProjectTopicName; import com.google.pubsub.v1.PubsubMessage; import java.io.IOException; import java.util.concurrent.ExecutionException; import java.util.concurrent.TimeUnit; import java.util.concurrent.TimeoutException; class RiskAnalysisNumericalStats { public static void main(String[] args) throws Exception { // TODO(developer): Replace these variables before running the sample. String projectId = "your-project-id"; String datasetId = "your-bigquery-dataset-id"; String tableId = "your-bigquery-table-id"; String topicId = "pub-sub-topic"; String subscriptionId = "pub-sub-subscription"; numericalStatsAnalysis(projectId, datasetId, tableId, topicId, subscriptionId); } public static void numericalStatsAnalysis( String projectId, String datasetId, String tableId, String topicId, String subscriptionId) throws ExecutionException, InterruptedException, IOException { // Initialize client that will be used to send requests. This client only needs to be created // once, and can be reused for multiple requests. After completing all of your requests, call // the "close" method on the client to safely clean up any remaining background resources. try (DlpServiceClient dlpServiceClient = DlpServiceClient.create()) { // Specify the BigQuery table to analyze BigQueryTable bigQueryTable = BigQueryTable.newBuilder() .setTableId(tableId) .setDatasetId(datasetId) .setProjectId(projectId) .build(); // This represents the name of the column to analyze, which must contain numerical data String columnName = "Age"; // Configure the privacy metric for the job FieldId fieldId = FieldId.newBuilder().setName(columnName).build(); NumericalStatsConfig numericalStatsConfig = NumericalStatsConfig.newBuilder().setField(fieldId).build(); PrivacyMetric privacyMetric = PrivacyMetric.newBuilder().setNumericalStatsConfig(numericalStatsConfig).build(); // Create action to publish job status notifications over Google Cloud Pub/Sub ProjectTopicName topicName = ProjectTopicName.of(projectId, topicId); PublishToPubSub publishToPubSub = PublishToPubSub.newBuilder().setTopic(topicName.toString()).build(); Action action = Action.newBuilder().setPubSub(publishToPubSub).build(); // Configure the risk analysis job to perform RiskAnalysisJobConfig riskAnalysisJobConfig = RiskAnalysisJobConfig.newBuilder() .setSourceTable(bigQueryTable) .setPrivacyMetric(privacyMetric) .addActions(action) .build(); CreateDlpJobRequest createDlpJobRequest = CreateDlpJobRequest.newBuilder() .setParent(LocationName.of(projectId, "global").toString()) .setRiskJob(riskAnalysisJobConfig) .build(); // Send the request to the API using the client DlpJob dlpJob = dlpServiceClient.createDlpJob(createDlpJobRequest); // Set up a Pub/Sub subscriber to listen on the job completion status final SettableApiFuture<Boolean> done = SettableApiFuture.create(); ProjectSubscriptionName subscriptionName = ProjectSubscriptionName.of(projectId, subscriptionId); MessageReceiver messageHandler = (PubsubMessage pubsubMessage, AckReplyConsumer ackReplyConsumer) -> { handleMessage(dlpJob, done, pubsubMessage, ackReplyConsumer); }; Subscriber subscriber = Subscriber.newBuilder(subscriptionName, messageHandler).build(); subscriber.startAsync(); // Wait for job completion semi-synchronously // For long jobs, consider using a truly asynchronous execution model such as Cloud Functions try { done.get(15, TimeUnit.MINUTES); } catch (TimeoutException e) { System.out.println("Job was not completed after 15 minutes."); return; } finally { subscriber.stopAsync(); subscriber.awaitTerminated(); } // Build a request to get the completed job GetDlpJobRequest getDlpJobRequest = GetDlpJobRequest.newBuilder().setName(dlpJob.getName()).build(); // Retrieve completed job status DlpJob completedJob = dlpServiceClient.getDlpJob(getDlpJobRequest); System.out.println("Job status: " + completedJob.getState()); System.out.println("Job name: " + dlpJob.getName()); // Get the result and parse through and process the information NumericalStatsResult result = completedJob.getRiskDetails().getNumericalStatsResult(); System.out.printf( "Value range : [%.3f, %.3f]\n", result.getMinValue().getFloatValue(), result.getMaxValue().getFloatValue()); int percent = 1; Double lastValue = null; for (Value quantileValue : result.getQuantileValuesList()) { Double currentValue = quantileValue.getFloatValue(); if (lastValue == null || !lastValue.equals(currentValue)) { System.out.printf("Value at %s %% quantile : %.3f", percent, currentValue); } lastValue = currentValue; } } } // handleMessage injects the job and settableFuture into the message reciever interface private static void handleMessage( DlpJob job, SettableApiFuture<Boolean> done, PubsubMessage pubsubMessage, AckReplyConsumer ackReplyConsumer) { String messageAttribute = pubsubMessage.getAttributesMap().get("DlpJobName"); if (job.getName().equals(messageAttribute)) { done.set(true); ackReplyConsumer.ack(); } else { ackReplyConsumer.nack(); } } }Node.js
To learn how to install and use the client library for Sensitive Data Protection, see Sensitive Data Protection client libraries.
To authenticate to Sensitive Data Protection, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.
// Import the Google Cloud client libraries const DLP = require('@google-cloud/dlp'); const {PubSub} = require('@google-cloud/pubsub'); // Instantiates clients const dlp = new DLP.DlpServiceClient(); const pubsub = new PubSub(); // The project ID to run the API call under // const projectId = 'my-project'; // The project ID the table is stored under // This may or (for public datasets) may not equal the calling project ID // const tableProjectId = 'my-project'; // The ID of the dataset to inspect, e.g. 'my_dataset' // const datasetId = 'my_dataset'; // The ID of the table to inspect, e.g. 'my_table' // const tableId = 'my_table'; // The name of the column to compute risk metrics for, e.g. 'age' // Note that this column must be a numeric data type // const columnName = 'firstName'; // The name of the Pub/Sub topic to notify once the job completes // TODO(developer): create a Pub/Sub topic to use for this // const topicId = 'MY-PUBSUB-TOPIC' // The name of the Pub/Sub subscription to use when listening for job // completion notifications // TODO(developer): create a Pub/Sub subscription to use for this // const subscriptionId = 'MY-PUBSUB-SUBSCRIPTION' async function numericalRiskAnalysis() { const sourceTable = { projectId: tableProjectId, datasetId: datasetId, tableId: tableId, }; // Construct request for creating a risk analysis job const request = { parent: `projects/${projectId}/locations/global`, riskJob: { privacyMetric: { numericalStatsConfig: { field: { name: columnName, }, }, }, sourceTable: sourceTable, actions: [ { pubSub: { topic: `projects/${projectId}/topics/${topicId}`, }, }, ], }, }; // Create helper function for unpacking values const getValue = obj => obj[Object.keys(obj)[0]]; // Run risk analysis job const [topicResponse] = await pubsub.topic(topicId).get(); const subscription = await topicResponse.subscription(subscriptionId); const [jobsResponse] = await dlp.createDlpJob(request); const jobName = jobsResponse.name; console.log(`Job created. Job name: ${jobName}`); // Watch the Pub/Sub topic until the DLP job finishes await new Promise((resolve, reject) => { const messageHandler = message => { if (message.attributes && message.attributes.DlpJobName === jobName) { message.ack(); subscription.removeListener('message', messageHandler); subscription.removeListener('error', errorHandler); resolve(jobName); } else { message.nack(); } }; const errorHandler = err => { subscription.removeListener('message', messageHandler); subscription.removeListener('error', errorHandler); reject(err); }; subscription.on('message', messageHandler); subscription.on('error', errorHandler); }); setTimeout(() => { console.log(' Waiting for DLP job to fully complete'); }, 500); const [job] = await dlp.getDlpJob({name: jobName}); const results = job.riskDetails.numericalStatsResult; console.log( `Value Range: [${getValue(results.minValue)}, ${getValue( results.maxValue )}]` ); // Print unique quantile values let tempValue = null; results.quantileValues.forEach((result, percent) => { const value = getValue(result); // Only print new values if ( tempValue !== value && !(tempValue && tempValue.equals && tempValue.equals(value)) ) { console.log(`Value at ${percent}% quantile: ${value}`); tempValue = value; } }); } await numericalRiskAnalysis();PHP
To learn how to install and use the client library for Sensitive Data Protection, see Sensitive Data Protection client libraries.
To authenticate to Sensitive Data Protection, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.
use Google\Cloud\Dlp\V2\Action; use Google\Cloud\Dlp\V2\Action\PublishToPubSub; use Google\Cloud\Dlp\V2\BigQueryTable; use Google\Cloud\Dlp\V2\Client\DlpServiceClient; use Google\Cloud\Dlp\V2\CreateDlpJobRequest; use Google\Cloud\Dlp\V2\DlpJob\JobState; use Google\Cloud\Dlp\V2\FieldId; use Google\Cloud\Dlp\V2\GetDlpJobRequest; use Google\Cloud\Dlp\V2\PrivacyMetric; use Google\Cloud\Dlp\V2\PrivacyMetric\NumericalStatsConfig; use Google\Cloud\Dlp\V2\RiskAnalysisJobConfig; use Google\Cloud\PubSub\PubSubClient; /** * Computes risk metrics of a column of numbers in a Google BigQuery table. * * @param string $callingProjectId The project ID to run the API call under * @param string $dataProjectId The project ID containing the target Datastore * @param string $topicId The name of the Pub/Sub topic to notify once the job completes * @param string $subscriptionId The name of the Pub/Sub subscription to use when listening for job * @param string $datasetId The ID of the BigQuery dataset to inspect * @param string $tableId The ID of the BigQuery table to inspect * @param string $columnName The name of the column to compute risk metrics for, e.g. "age" */ function numerical_stats( string $callingProjectId, string $dataProjectId, string $topicId, string $subscriptionId, string $datasetId, string $tableId, string $columnName ): void { // Instantiate a client. $dlp = new DlpServiceClient(); $pubsub = new PubSubClient(); $topic = $pubsub->topic($topicId); // Construct risk analysis config $columnField = (new FieldId()) ->setName($columnName); $statsConfig = (new NumericalStatsConfig()) ->setField($columnField); $privacyMetric = (new PrivacyMetric()) ->setNumericalStatsConfig($statsConfig); // Construct items to be analyzed $bigqueryTable = (new BigQueryTable()) ->setProjectId($dataProjectId) ->setDatasetId($datasetId) ->setTableId($tableId); // Construct the action to run when job completes $pubSubAction = (new PublishToPubSub()) ->setTopic($topic->name()); $action = (new Action()) ->setPubSub($pubSubAction); // Construct risk analysis job config to run $riskJob = (new RiskAnalysisJobConfig()) ->setPrivacyMetric($privacyMetric) ->setSourceTable($bigqueryTable) ->setActions([$action]); // Listen for job notifications via an existing topic/subscription. $subscription = $topic->subscription($subscriptionId); // Submit request $parent = "projects/$callingProjectId/locations/global"; $createDlpJobRequest = (new CreateDlpJobRequest()) ->setParent($parent) ->setRiskJob($riskJob); $job = $dlp->createDlpJob($createDlpJobRequest); // Poll Pub/Sub using exponential backoff until job finishes // Consider using an asynchronous execution model such as Cloud Functions $attempt = 1; $startTime = time(); do { foreach ($subscription->pull() as $message) { if ( isset($message->attributes()['DlpJobName']) && $message->attributes()['DlpJobName'] === $job->getName() ) { $subscription->acknowledge($message); // Get the updated job. Loop to avoid race condition with DLP API. do { $getDlpJobRequest = (new GetDlpJobRequest()) ->setName($job->getName()); $job = $dlp->getDlpJob($getDlpJobRequest); } while ($job->getState() == JobState::RUNNING); break 2; // break from parent do while } } print('Waiting for job to complete' . PHP_EOL); // Exponential backoff with max delay of 60 seconds sleep(min(60, pow(2, ++$attempt))); } while (time() - $startTime < 600); // 10 minute timeout // Helper function to convert Protobuf values to strings $valueToString = function ($value) { $json = json_decode($value->serializeToJsonString(), true); return array_shift($json); }; // Print finding counts printf('Job %s status: %s' . PHP_EOL, $job->getName(), JobState::name($job->getState())); switch ($job->getState()) { case JobState::DONE: $results = $job->getRiskDetails()->getNumericalStatsResult(); printf( 'Value range: [%s, %s]' . PHP_EOL, $valueToString($results->getMinValue()), $valueToString($results->getMaxValue()) ); // Only print unique values $lastValue = null; foreach ($results->getQuantileValues() as $percent => $quantileValue) { $value = $valueToString($quantileValue); if ($value != $lastValue) { printf('Value at %s quantile: %s' . PHP_EOL, $percent, $value); $lastValue = $value; } } break; case JobState::FAILED: printf('Job %s had errors:' . PHP_EOL, $job->getName()); $errors = $job->getErrors(); foreach ($errors as $error) { var_dump($error->getDetails()); } break; case JobState::PENDING: print('Job has not completed. Consider a longer timeout or an asynchronous execution model' . PHP_EOL); break; default: print('Unexpected job state. Most likely, the job is either running or has not yet started.'); } }Python
To learn how to install and use the client library for Sensitive Data Protection, see Sensitive Data Protection client libraries.
To authenticate to Sensitive Data Protection, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.
import concurrent.futures import google.cloud.dlp import google.cloud.pubsub def numerical_risk_analysis( project: str, table_project_id: str, dataset_id: str, table_id: str, column_name: str, topic_id: str, subscription_id: str, timeout: int = 300, ) -> None: """Uses the Data Loss Prevention API to compute risk metrics of a column of numerical data in a Google BigQuery table. Args: project: The Google Cloud project id to use as a parent resource. table_project_id: The Google Cloud project id where the BigQuery table is stored. dataset_id: The id of the dataset to inspect. table_id: The id of the table to inspect. column_name: The name of the column to compute risk metrics for. topic_id: The name of the Pub/Sub topic to notify once the job completes. subscription_id: The name of the Pub/Sub subscription to use when listening for job completion notifications. timeout: The number of seconds to wait for a response from the API. Returns: None; the response from the API is printed to the terminal. """ # Instantiate a client. dlp = google.cloud.dlp_v2.DlpServiceClient() # Convert the project id into full resource ids. topic = google.cloud.pubsub.PublisherClient.topic_path(project, topic_id) parent = f"projects/{project}/locations/global" # Location info of the BigQuery table. source_table = { "project_id": table_project_id, "dataset_id": dataset_id, "table_id": table_id, } # Tell the API where to send a notification when the job is complete. actions = [{"pub_sub": {"topic": topic}}] # Configure risk analysis job # Give the name of the numeric column to compute risk metrics for risk_job = { "privacy_metric": {"numerical_stats_config": {"field": {"name": column_name}}}, "source_table": source_table, "actions": actions, } # Call API to start risk analysis job operation = dlp.create_dlp_job(request={"parent": parent, "risk_job": risk_job}) def callback(message: google.cloud.pubsub_v1.subscriber.message.Message) -> None: if message.attributes["DlpJobName"] == operation.name: # This is the message we're looking for, so acknowledge it. message.ack() # Now that the job is done, fetch the results and print them. job = dlp.get_dlp_job(request={"name": operation.name}) print(f"Job name: {job.name}") results = job.risk_details.numerical_stats_result print( "Value Range: [{}, {}]".format( results.min_value.integer_value, results.max_value.integer_value, ) ) prev_value = None for percent, result in enumerate(results.quantile_values): value = result.integer_value if prev_value != value: print(f"Value at {percent}% quantile: {value}") prev_value = value subscription.set_result(None) else: # This is not the message we're looking for. message.drop() # Create a Pub/Sub client and find the subscription. The subscription is # expected to already be listening to the topic. subscriber = google.cloud.pubsub.SubscriberClient() subscription_path = subscriber.subscription_path(project, subscription_id) subscription = subscriber.subscribe(subscription_path, callback) try: subscription.result(timeout=timeout) except concurrent.futures.TimeoutError: print( "No event received before the timeout. Please verify that the " "subscription provided is subscribed to the topic provided." ) subscription.close() Compute categorical numerical statistics
You can compute categorical numerical statistics for the individual histogram buckets within a BigQuery column, including:
- Upper bound on value frequency within a given bucket
- Lower bound on value frequency within a given bucket
- Size of a given bucket
- A sample of value frequencies within a given bucket (maximum 20)
To calculate these values, you configure a DlpJob, setting the CategoricalStatsConfig privacy metric to the name of the column to scan. When you run the job, Sensitive Data Protection computes statistics for the given column, returning its results in the CategoricalStatsResult object.
Code examples
Following is sample code in several languages that demonstrates how to use Sensitive Data Protection to calculate categorical statistics.
C#
To learn how to install and use the client library for Sensitive Data Protection, see Sensitive Data Protection client libraries.
To authenticate to Sensitive Data Protection, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.
using Google.Api.Gax.ResourceNames; using Google.Cloud.Dlp.V2; using Google.Cloud.PubSub.V1; using Newtonsoft.Json; using System; using System.Collections.Generic; using System.Linq; using System.Threading; using System.Threading.Tasks; using static Google.Cloud.Dlp.V2.Action.Types; using static Google.Cloud.Dlp.V2.PrivacyMetric.Types; public class RiskAnalysisCreateCategoricalStats { public static AnalyzeDataSourceRiskDetails.Types.CategoricalStatsResult CategoricalStats( string callingProjectId, string tableProjectId, string datasetId, string tableId, string topicId, string subscriptionId, string columnName) { var dlp = DlpServiceClient.Create(); // Construct + submit the job var config = new RiskAnalysisJobConfig { PrivacyMetric = new PrivacyMetric { CategoricalStatsConfig = new CategoricalStatsConfig() { Field = new FieldId { Name = columnName } } }, SourceTable = new BigQueryTable { ProjectId = tableProjectId, DatasetId = datasetId, TableId = tableId }, Actions = { new Google.Cloud.Dlp.V2.Action { PubSub = new PublishToPubSub { Topic = $"projects/{callingProjectId}/topics/{topicId}" } } } }; var submittedJob = dlp.CreateDlpJob(new CreateDlpJobRequest { ParentAsProjectName = new ProjectName(callingProjectId), RiskJob = config }); // Listen to pub/sub for the job var subscriptionName = new SubscriptionName(callingProjectId, subscriptionId); var subscriber = SubscriberClient.CreateAsync( subscriptionName).Result; // SimpleSubscriber runs your message handle function on multiple // threads to maximize throughput. var done = new ManualResetEventSlim(false); subscriber.StartAsync((PubsubMessage message, CancellationToken cancel) => { if (message.Attributes["DlpJobName"] == submittedJob.Name) { Thread.Sleep(500); // Wait for DLP API results to become consistent done.Set(); return Task.FromResult(SubscriberClient.Reply.Ack); } else { return Task.FromResult(SubscriberClient.Reply.Nack); } }); done.Wait(TimeSpan.FromMinutes(10)); // 10 minute timeout; may not work for large jobs subscriber.StopAsync(CancellationToken.None).Wait(); // Process results var resultJob = dlp.GetDlpJob(new GetDlpJobRequest { DlpJobName = DlpJobName.Parse(submittedJob.Name) }); var result = resultJob.RiskDetails.CategoricalStatsResult; for (var bucketIdx = 0; bucketIdx < result.ValueFrequencyHistogramBuckets.Count; bucketIdx++) { var bucket = result.ValueFrequencyHistogramBuckets[bucketIdx]; Console.WriteLine($"Bucket {bucketIdx}"); Console.WriteLine($" Most common value occurs {bucket.ValueFrequencyUpperBound} time(s)."); Console.WriteLine($" Least common value occurs {bucket.ValueFrequencyLowerBound} time(s)."); Console.WriteLine($" {bucket.BucketSize} unique value(s) total."); foreach (var bucketValue in bucket.BucketValues) { // 'UnpackValue(x)' is a prettier version of 'x.toString()' Console.WriteLine($" Value {UnpackValue(bucketValue.Value)} occurs {bucketValue.Count} time(s)."); } } return result; } public static string UnpackValue(Value protoValue) { var jsonValue = JsonConvert.DeserializeObject<Dictionary<string, object>>(protoValue.ToString()); return jsonValue.Values.ElementAt(0).ToString(); } } Go
To learn how to install and use the client library for Sensitive Data Protection, see Sensitive Data Protection client libraries.
To authenticate to Sensitive Data Protection, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.
import ( "context" "fmt" "io" "time" dlp "cloud.google.com/go/dlp/apiv2" "cloud.google.com/go/dlp/apiv2/dlppb" "cloud.google.com/go/pubsub" ) // riskCategorical computes the categorical risk of the given data. func riskCategorical(w io.Writer, projectID, dataProject, pubSubTopic, pubSubSub, datasetID, tableID, columnName string) error { // projectID := "my-project-id" // dataProject := "bigquery-public-data" // pubSubTopic := "dlp-risk-sample-topic" // pubSubSub := "dlp-risk-sample-sub" // datasetID := "nhtsa_traffic_fatalities" // tableID := "accident_2015" // columnName := "state_number" ctx := context.Background() client, err := dlp.NewClient(ctx) if err != nil { return fmt.Errorf("dlp.NewClient: %w", err) } // Create a PubSub Client used to listen for when the inspect job finishes. pubsubClient, err := pubsub.NewClient(ctx, projectID) if err != nil { return err } defer pubsubClient.Close() // Create a PubSub subscription we can use to listen for messages. // Create the Topic if it doesn't exist. t := pubsubClient.Topic(pubSubTopic) topicExists, err := t.Exists(ctx) if err != nil { return err } if !topicExists { if t, err = pubsubClient.CreateTopic(ctx, pubSubTopic); err != nil { return err } } // Create the Subscription if it doesn't exist. s := pubsubClient.Subscription(pubSubSub) subExists, err := s.Exists(ctx) if err != nil { return err } if !subExists { if s, err = pubsubClient.CreateSubscription(ctx, pubSubSub, pubsub.SubscriptionConfig{Topic: t}); err != nil { return err } } // topic is the PubSub topic string where messages should be sent. topic := "projects/" + projectID + "/topics/" + pubSubTopic // Create a configured request. req := &dlppb.CreateDlpJobRequest{ Parent: fmt.Sprintf("projects/%s/locations/global", projectID), Job: &dlppb.CreateDlpJobRequest_RiskJob{ RiskJob: &dlppb.RiskAnalysisJobConfig{ // PrivacyMetric configures what to compute. PrivacyMetric: &dlppb.PrivacyMetric{ Type: &dlppb.PrivacyMetric_CategoricalStatsConfig_{ CategoricalStatsConfig: &dlppb.PrivacyMetric_CategoricalStatsConfig{ Field: &dlppb.FieldId{ Name: columnName, }, }, }, }, // SourceTable describes where to find the data. SourceTable: &dlppb.BigQueryTable{ ProjectId: dataProject, DatasetId: datasetID, TableId: tableID, }, // Send a message to PubSub using Actions. Actions: []*dlppb.Action{ { Action: &dlppb.Action_PubSub{ PubSub: &dlppb.Action_PublishToPubSub{ Topic: topic, }, }, }, }, }, }, } // Create the risk job. j, err := client.CreateDlpJob(ctx, req) if err != nil { return fmt.Errorf("CreateDlpJob: %w", err) } fmt.Fprintf(w, "Created job: %v\n", j.GetName()) // Wait for the risk job to finish by waiting for a PubSub message. // This only waits for 10 minutes. For long jobs, consider using a truly // asynchronous execution model such as Cloud Functions. ctx, cancel := context.WithTimeout(ctx, 10*time.Minute) defer cancel() err = s.Receive(ctx, func(ctx context.Context, msg *pubsub.Message) { // If this is the wrong job, do not process the result. if msg.Attributes["DlpJobName"] != j.GetName() { msg.Nack() return } msg.Ack() time.Sleep(500 * time.Millisecond) resp, err := client.GetDlpJob(ctx, &dlppb.GetDlpJobRequest{ Name: j.GetName(), }) if err != nil { fmt.Fprintf(w, "GetDlpJob: %v", err) return } h := resp.GetRiskDetails().GetCategoricalStatsResult().GetValueFrequencyHistogramBuckets() for i, b := range h { fmt.Fprintf(w, "Histogram bucket %v\n", i) fmt.Fprintf(w, " Most common value occurs %v times\n", b.GetValueFrequencyUpperBound()) fmt.Fprintf(w, " Least common value occurs %v times\n", b.GetValueFrequencyLowerBound()) fmt.Fprintf(w, " %v unique values total\n", b.GetBucketSize()) for _, v := range b.GetBucketValues() { fmt.Fprintf(w, " Value %v occurs %v times\n", v.GetValue(), v.GetCount()) } } // Stop listening for more messages. cancel() }) if err != nil { return fmt.Errorf("Receive: %w", err) } return nil } Java
To learn how to install and use the client library for Sensitive Data Protection, see Sensitive Data Protection client libraries.
To authenticate to Sensitive Data Protection, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.
import com.google.api.core.SettableApiFuture; import com.google.cloud.dlp.v2.DlpServiceClient; import com.google.cloud.pubsub.v1.AckReplyConsumer; import com.google.cloud.pubsub.v1.MessageReceiver; import com.google.cloud.pubsub.v1.Subscriber; import com.google.privacy.dlp.v2.Action; import com.google.privacy.dlp.v2.Action.PublishToPubSub; import com.google.privacy.dlp.v2.AnalyzeDataSourceRiskDetails.CategoricalStatsResult; import com.google.privacy.dlp.v2.AnalyzeDataSourceRiskDetails.CategoricalStatsResult.CategoricalStatsHistogramBucket; import com.google.privacy.dlp.v2.BigQueryTable; import com.google.privacy.dlp.v2.CreateDlpJobRequest; import com.google.privacy.dlp.v2.DlpJob; import com.google.privacy.dlp.v2.FieldId; import com.google.privacy.dlp.v2.GetDlpJobRequest; import com.google.privacy.dlp.v2.LocationName; import com.google.privacy.dlp.v2.PrivacyMetric; import com.google.privacy.dlp.v2.PrivacyMetric.CategoricalStatsConfig; import com.google.privacy.dlp.v2.RiskAnalysisJobConfig; import com.google.privacy.dlp.v2.ValueFrequency; import com.google.pubsub.v1.ProjectSubscriptionName; import com.google.pubsub.v1.ProjectTopicName; import com.google.pubsub.v1.PubsubMessage; import java.io.IOException; import java.util.List; import java.util.concurrent.ExecutionException; import java.util.concurrent.TimeUnit; import java.util.concurrent.TimeoutException; class RiskAnalysisCategoricalStats { public static void main(String[] args) throws Exception { // TODO(developer): Replace these variables before running the sample. String projectId = "your-project-id"; String datasetId = "your-bigquery-dataset-id"; String tableId = "your-bigquery-table-id"; String topicId = "pub-sub-topic"; String subscriptionId = "pub-sub-subscription"; categoricalStatsAnalysis(projectId, datasetId, tableId, topicId, subscriptionId); } public static void categoricalStatsAnalysis( String projectId, String datasetId, String tableId, String topicId, String subscriptionId) throws ExecutionException, InterruptedException, IOException { // Initialize client that will be used to send requests. This client only needs to be created // once, and can be reused for multiple requests. After completing all of your requests, call // the "close" method on the client to safely clean up any remaining background resources. try (DlpServiceClient dlpServiceClient = DlpServiceClient.create()) { // Specify the BigQuery table to analyze BigQueryTable bigQueryTable = BigQueryTable.newBuilder() .setProjectId(projectId) .setDatasetId(datasetId) .setTableId(tableId) .build(); // The name of the column to analyze, which doesn't need to contain numerical data String columnName = "Mystery"; // Configure the privacy metric for the job FieldId fieldId = FieldId.newBuilder().setName(columnName).build(); CategoricalStatsConfig categoricalStatsConfig = CategoricalStatsConfig.newBuilder().setField(fieldId).build(); PrivacyMetric privacyMetric = PrivacyMetric.newBuilder().setCategoricalStatsConfig(categoricalStatsConfig).build(); // Create action to publish job status notifications over Google Cloud Pub/Sub ProjectTopicName topicName = ProjectTopicName.of(projectId, topicId); PublishToPubSub publishToPubSub = PublishToPubSub.newBuilder().setTopic(topicName.toString()).build(); Action action = Action.newBuilder().setPubSub(publishToPubSub).build(); // Configure the risk analysis job to perform RiskAnalysisJobConfig riskAnalysisJobConfig = RiskAnalysisJobConfig.newBuilder() .setSourceTable(bigQueryTable) .setPrivacyMetric(privacyMetric) .addActions(action) .build(); // Build the job creation request to be sent by the client CreateDlpJobRequest createDlpJobRequest = CreateDlpJobRequest.newBuilder() .setParent(LocationName.of(projectId, "global").toString()) .setRiskJob(riskAnalysisJobConfig) .build(); // Send the request to the API using the client DlpJob dlpJob = dlpServiceClient.createDlpJob(createDlpJobRequest); // Set up a Pub/Sub subscriber to listen on the job completion status final SettableApiFuture<Boolean> done = SettableApiFuture.create(); ProjectSubscriptionName subscriptionName = ProjectSubscriptionName.of(projectId, subscriptionId); MessageReceiver messageHandler = (PubsubMessage pubsubMessage, AckReplyConsumer ackReplyConsumer) -> { handleMessage(dlpJob, done, pubsubMessage, ackReplyConsumer); }; Subscriber subscriber = Subscriber.newBuilder(subscriptionName, messageHandler).build(); subscriber.startAsync(); // Wait for job completion semi-synchronously // For long jobs, consider using a truly asynchronous execution model such as Cloud Functions try { done.get(15, TimeUnit.MINUTES); } catch (TimeoutException e) { System.out.println("Job was not completed after 15 minutes."); return; } finally { subscriber.stopAsync(); subscriber.awaitTerminated(); } // Build a request to get the completed job GetDlpJobRequest getDlpJobRequest = GetDlpJobRequest.newBuilder().setName(dlpJob.getName()).build(); // Retrieve completed job status DlpJob completedJob = dlpServiceClient.getDlpJob(getDlpJobRequest); System.out.println("Job status: " + completedJob.getState()); System.out.println("Job name: " + dlpJob.getName()); // Get the result and parse through and process the information CategoricalStatsResult result = completedJob.getRiskDetails().getCategoricalStatsResult(); List<CategoricalStatsHistogramBucket> histogramBucketList = result.getValueFrequencyHistogramBucketsList(); for (CategoricalStatsHistogramBucket bucket : histogramBucketList) { long mostCommonFrequency = bucket.getValueFrequencyUpperBound(); System.out.printf("Most common value occurs %d time(s).\n", mostCommonFrequency); long leastCommonFrequency = bucket.getValueFrequencyLowerBound(); System.out.printf("Least common value occurs %d time(s).\n", leastCommonFrequency); for (ValueFrequency valueFrequency : bucket.getBucketValuesList()) { System.out.printf( "Value %s occurs %d time(s).\n", valueFrequency.getValue().toString(), valueFrequency.getCount()); } } } } // handleMessage injects the job and settableFuture into the message reciever interface private static void handleMessage( DlpJob job, SettableApiFuture<Boolean> done, PubsubMessage pubsubMessage, AckReplyConsumer ackReplyConsumer) { String messageAttribute = pubsubMessage.getAttributesMap().get("DlpJobName"); if (job.getName().equals(messageAttribute)) { done.set(true); ackReplyConsumer.ack(); } else { ackReplyConsumer.nack(); } } } Node.js
To learn how to install and use the client library for Sensitive Data Protection, see Sensitive Data Protection client libraries.
To authenticate to Sensitive Data Protection, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.
// Import the Google Cloud client libraries const DLP = require('@google-cloud/dlp'); const {PubSub} = require('@google-cloud/pubsub'); // Instantiates clients const dlp = new DLP.DlpServiceClient(); const pubsub = new PubSub(); // The project ID to run the API call under // const projectId = 'my-project'; // The project ID the table is stored under // This may or (for public datasets) may not equal the calling project ID // const tableProjectId = 'my-project'; // The ID of the dataset to inspect, e.g. 'my_dataset' // const datasetId = 'my_dataset'; // The ID of the table to inspect, e.g. 'my_table' // const tableId = 'my_table'; // The name of the Pub/Sub topic to notify once the job completes // TODO(developer): create a Pub/Sub topic to use for this // const topicId = 'MY-PUBSUB-TOPIC' // The name of the Pub/Sub subscription to use when listening for job // completion notifications // TODO(developer): create a Pub/Sub subscription to use for this // const subscriptionId = 'MY-PUBSUB-SUBSCRIPTION' // The name of the column to compute risk metrics for, e.g. 'firstName' // const columnName = 'firstName'; async function categoricalRiskAnalysis() { const sourceTable = { projectId: tableProjectId, datasetId: datasetId, tableId: tableId, }; // Construct request for creating a risk analysis job const request = { parent: `projects/${projectId}/locations/global`, riskJob: { privacyMetric: { categoricalStatsConfig: { field: { name: columnName, }, }, }, sourceTable: sourceTable, actions: [ { pubSub: { topic: `projects/${projectId}/topics/${topicId}`, }, }, ], }, }; // Create helper function for unpacking values const getValue = obj => obj[Object.keys(obj)[0]]; // Run risk analysis job const [topicResponse] = await pubsub.topic(topicId).get(); const subscription = await topicResponse.subscription(subscriptionId); const [jobsResponse] = await dlp.createDlpJob(request); const jobName = jobsResponse.name; console.log(`Job created. Job name: ${jobName}`); // Watch the Pub/Sub topic until the DLP job finishes await new Promise((resolve, reject) => { const messageHandler = message => { if (message.attributes && message.attributes.DlpJobName === jobName) { message.ack(); subscription.removeListener('message', messageHandler); subscription.removeListener('error', errorHandler); resolve(jobName); } else { message.nack(); } }; const errorHandler = err => { subscription.removeListener('message', messageHandler); subscription.removeListener('error', errorHandler); reject(err); }; subscription.on('message', messageHandler); subscription.on('error', errorHandler); }); setTimeout(() => { console.log(' Waiting for DLP job to fully complete'); }, 500); const [job] = await dlp.getDlpJob({name: jobName}); const histogramBuckets = job.riskDetails.categoricalStatsResult.valueFrequencyHistogramBuckets; histogramBuckets.forEach((histogramBucket, histogramBucketIdx) => { console.log(`Bucket ${histogramBucketIdx}:`); // Print bucket stats console.log( ` Most common value occurs ${histogramBucket.valueFrequencyUpperBound} time(s)` ); console.log( ` Least common value occurs ${histogramBucket.valueFrequencyLowerBound} time(s)` ); // Print bucket values console.log(`${histogramBucket.bucketSize} unique values total.`); histogramBucket.bucketValues.forEach(valueBucket => { console.log( ` Value ${getValue(valueBucket.value)} occurs ${ valueBucket.count } time(s).` ); }); }); } await categoricalRiskAnalysis();PHP
To learn how to install and use the client library for Sensitive Data Protection, see Sensitive Data Protection client libraries.
To authenticate to Sensitive Data Protection, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.
use Google\Cloud\Dlp\V2\Action; use Google\Cloud\Dlp\V2\Action\PublishToPubSub; use Google\Cloud\Dlp\V2\BigQueryTable; use Google\Cloud\Dlp\V2\Client\DlpServiceClient; use Google\Cloud\Dlp\V2\CreateDlpJobRequest; use Google\Cloud\Dlp\V2\DlpJob\JobState; use Google\Cloud\Dlp\V2\FieldId; use Google\Cloud\Dlp\V2\GetDlpJobRequest; use Google\Cloud\Dlp\V2\PrivacyMetric; use Google\Cloud\Dlp\V2\PrivacyMetric\CategoricalStatsConfig; use Google\Cloud\Dlp\V2\RiskAnalysisJobConfig; use Google\Cloud\PubSub\PubSubClient; /** * Computes risk metrics of a column of data in a Google BigQuery table. * * @param string $callingProjectId The project ID to run the API call under * @param string $dataProjectId The project ID containing the target Datastore * @param string $topicId The name of the Pub/Sub topic to notify once the job completes * @param string $subscriptionId The name of the Pub/Sub subscription to use when listening for job * @param string $datasetId The ID of the dataset to inspect * @param string $tableId The ID of the table to inspect * @param string $columnName The name of the column to compute risk metrics for, e.g. "age" */ function categorical_stats( string $callingProjectId, string $dataProjectId, string $topicId, string $subscriptionId, string $datasetId, string $tableId, string $columnName ): void { // Instantiate a client. $dlp = new DlpServiceClient(); $pubsub = new PubSubClient(); $topic = $pubsub->topic($topicId); // Construct risk analysis config $columnField = (new FieldId()) ->setName($columnName); $statsConfig = (new CategoricalStatsConfig()) ->setField($columnField); $privacyMetric = (new PrivacyMetric()) ->setCategoricalStatsConfig($statsConfig); // Construct items to be analyzed $bigqueryTable = (new BigQueryTable()) ->setProjectId($dataProjectId) ->setDatasetId($datasetId) ->setTableId($tableId); // Construct the action to run when job completes $pubSubAction = (new PublishToPubSub()) ->setTopic($topic->name()); $action = (new Action()) ->setPubSub($pubSubAction); // Construct risk analysis job config to run $riskJob = (new RiskAnalysisJobConfig()) ->setPrivacyMetric($privacyMetric) ->setSourceTable($bigqueryTable) ->setActions([$action]); // Submit request $parent = "projects/$callingProjectId/locations/global"; $createDlpJobRequest = (new CreateDlpJobRequest()) ->setParent($parent) ->setRiskJob($riskJob); $job = $dlp->createDlpJob($createDlpJobRequest); // Listen for job notifications via an existing topic/subscription. $subscription = $topic->subscription($subscriptionId); // Poll Pub/Sub using exponential backoff until job finishes // Consider using an asynchronous execution model such as Cloud Functions $attempt = 1; $startTime = time(); do { foreach ($subscription->pull() as $message) { if ( isset($message->attributes()['DlpJobName']) && $message->attributes()['DlpJobName'] === $job->getName() ) { $subscription->acknowledge($message); // Get the updated job. Loop to avoid race condition with DLP API. do { $getDlpJobRequest = (new GetDlpJobRequest()) ->setName($job->getName()); $job = $dlp->getDlpJob($getDlpJobRequest); } while ($job->getState() == JobState::RUNNING); break 2; // break from parent do while } } print('Waiting for job to complete' . PHP_EOL); // Exponential backoff with max delay of 60 seconds sleep(min(60, pow(2, ++$attempt))); } while (time() - $startTime < 600); // 10 minute timeout // Print finding counts printf('Job %s status: %s' . PHP_EOL, $job->getName(), JobState::name($job->getState())); switch ($job->getState()) { case JobState::DONE: $histBuckets = $job->getRiskDetails()->getCategoricalStatsResult()->getValueFrequencyHistogramBuckets(); foreach ($histBuckets as $bucketIndex => $histBucket) { // Print bucket stats printf('Bucket %s:' . PHP_EOL, $bucketIndex); printf(' Most common value occurs %s time(s)' . PHP_EOL, $histBucket->getValueFrequencyUpperBound()); printf(' Least common value occurs %s time(s)' . PHP_EOL, $histBucket->getValueFrequencyLowerBound()); printf(' %s unique value(s) total.', $histBucket->getBucketSize()); // Print bucket values foreach ($histBucket->getBucketValues() as $percent => $quantile) { printf( ' Value %s occurs %s time(s).' . PHP_EOL, $quantile->getValue()->serializeToJsonString(), $quantile->getCount() ); } } break; case JobState::FAILED: $errors = $job->getErrors(); printf('Job %s had errors:' . PHP_EOL, $job->getName()); foreach ($errors as $error) { var_dump($error->getDetails()); } break; case JobState::PENDING: print('Job has not completed. Consider a longer timeout or an asynchronous execution model' . PHP_EOL); break; default: print('Unexpected job state.'); } }Python
To learn how to install and use the client library for Sensitive Data Protection, see Sensitive Data Protection client libraries.
To authenticate to Sensitive Data Protection, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.
import concurrent.futures import google.cloud.dlp import google.cloud.pubsub def categorical_risk_analysis( project: str, table_project_id: str, dataset_id: str, table_id: str, column_name: str, topic_id: str, subscription_id: str, timeout: int = 300, ) -> None: """Uses the Data Loss Prevention API to compute risk metrics of a column of categorical data in a Google BigQuery table. Args: project: The Google Cloud project id to use as a parent resource. table_project_id: The Google Cloud project id where the BigQuery table is stored. dataset_id: The id of the dataset to inspect. table_id: The id of the table to inspect. column_name: The name of the column to compute risk metrics for. topic_id: The name of the Pub/Sub topic to notify once the job completes. subscription_id: The name of the Pub/Sub subscription to use when listening for job completion notifications. timeout: The number of seconds to wait for a response from the API. Returns: None; the response from the API is printed to the terminal. """ # Instantiate a client. dlp = google.cloud.dlp_v2.DlpServiceClient() # Convert the project id into full resource ids. topic = google.cloud.pubsub.PublisherClient.topic_path(project, topic_id) parent = f"projects/{project}/locations/global" # Location info of the BigQuery table. source_table = { "project_id": table_project_id, "dataset_id": dataset_id, "table_id": table_id, } # Tell the API where to send a notification when the job is complete. actions = [{"pub_sub": {"topic": topic}}] # Configure risk analysis job # Give the name of the numeric column to compute risk metrics for risk_job = { "privacy_metric": { "categorical_stats_config": {"field": {"name": column_name}} }, "source_table": source_table, "actions": actions, } # Call API to start risk analysis job operation = dlp.create_dlp_job(request={"parent": parent, "risk_job": risk_job}) def callback(message: google.cloud.pubsub_v1.subscriber.message.Message) -> None: if message.attributes["DlpJobName"] == operation.name: # This is the message we're looking for, so acknowledge it. message.ack() # Now that the job is done, fetch the results and print them. job = dlp.get_dlp_job(request={"name": operation.name}) print(f"Job name: {job.name}") histogram_buckets = ( job.risk_details.categorical_stats_result.value_frequency_histogram_buckets # noqa: E501 ) # Print bucket stats for i, bucket in enumerate(histogram_buckets): print(f"Bucket {i}:") print( " Most common value occurs {} time(s)".format( bucket.value_frequency_upper_bound ) ) print( " Least common value occurs {} time(s)".format( bucket.value_frequency_lower_bound ) ) print(f" {bucket.bucket_size} unique values total.") for value in bucket.bucket_values: print( " Value {} occurs {} time(s)".format( value.value.integer_value, value.count ) ) subscription.set_result(None) else: # This is not the message we're looking for. message.drop() # Create a Pub/Sub client and find the subscription. The subscription is # expected to already be listening to the topic. subscriber = google.cloud.pubsub.SubscriberClient() subscription_path = subscriber.subscription_path(project, subscription_id) subscription = subscriber.subscribe(subscription_path, callback) try: subscription.result(timeout=timeout) except concurrent.futures.TimeoutError: print( "No event received before the timeout. Please verify that the " "subscription provided is subscribed to the topic provided." ) subscription.close()