I am facing problem in proving the Auto-correlation property of Discrete Fourier Transform (DFT), that is
$$\mathcal{DFT}\left\{\sum_{r=0}^{N-1}x[r]x^*[r+n]\right\} = X[k]X^*[k]= |X[k]|^2$$
where $X[k]$ is the DFT of $x[n]$, and $x[n]$ is periodic with period $N$: $$ x[n+N] = x[n] \qquad \forall n \in \mathbb{Z} $$ Likewise $X[k]$ is periodic with period $N$: $$ X[k+N] = X[k] \qquad \forall k \in \mathbb{Z} $$
Below is my Approach:
$$\begin{align} \mathcal{DFT}\left\{\sum_{r=0}^{N-1}x[r]x^*[r+n]\right\} &= \sum_{n=0}^{N-1} \sum_{r=0}^{N-1}x[r] x^*[r+n] e^{- j 2 \pi n k/N} \\ \\ &= \sum_{r=0}^{N-1}x[r] \sum_{n=0}^{N-1} x^*[r+n] e^{- j 2 \pi n k/N} \\ \\ &= \sum_{r=0}^{N-1}x[r] \sum_{n=r}^{r+N-1} x^*[n] e^{- j 2 \pi (n-r) k/N} \\ \\ &= \sum_{r=0}^{N-1}x[r] \sum_{n=0}^{N-1} x^*[n] e^{j 2 \pi r k/N} e^{- j 2 \pi n k/N} \\ \\ &= \sum_{r=0}^{N-1}x[r] e^{j 2 \pi r k/N} \sum_{n=0}^{N-1} x^*[n] e^{- j 2 \pi n k/N} \\ \\ &= \sum_{r=0}^{N-1}x[r] e^{j 2 \pi r k/N} \sum_{n=0}^{N-1} x^*[n] (e^{- j 2 \pi n (-k)/N})^* \\ \\ &= \sum_{r=0}^{N-1}x[r] e^{j 2 \pi r k/N} \sum_{n=0}^{N-1} ( x[n] e^{- j 2 \pi n (-k)/N})^* \\ \\ &= \sum_{r=0}^{N-1} x[r] e^{ j 2 \pi r k/N} X^*[-k] \\ \\ &= \sum_{r=0}^{N-1} x[r] e^{ -j 2 \pi r (-k)/N} X^*[-k] \\ \\ &= X[-k] X^*[-k] = \Big| X[-k] \Big|^2 \\ \\ & \ne \ X[k] X^*[k] \quad = \Big| X[k] \Big|^2 \\ \end{align}$$
as $$X[k] = \mathcal{DFT} \{ x[r] \} = \sum_{r=0}^{N-1} x[r] e^{- j 2 \pi r k/N}$$
so where is my mistake? and how should I approach??