Well, mathematically speaking we can write:
$$\mathcal{H}\left(\text{s}\right)=\frac{\text{sL}}{\text{sL}+\text{R}}\tag1$$
Using \$\text{s}=\text{j}\omega\$, we get:
$$\left|\underline{\mathcal{H}}\left(\text{j}\omega\right)\right|=\left|\frac{\text{j}\omega\text{L}}{\text{j}\omega\text{L}+\text{R}}\right|=\frac{\left|\text{j}\omega\text{L}\right|}{\left|\text{j}\omega\text{L}+\text{R}\right|}=\frac{\omega\text{L}}{\sqrt{\text{R}^2+\left(\omega\text{L}\right)^2}}\tag2$$
Now, we get:
- $$\lim_{\omega\to0}\left|\underline{\mathcal{H}}\left(\text{j}\omega\right)\right|=0\tag3$$
- $$\lim_{\omega\to\infty}\left|\underline{\mathcal{H}}\left(\text{j}\omega\right)\right|=1\tag4$$
Solving for the \$-3\space\text{dB}\$ point gives:
$$\frac{\omega\cdot10\cdot10^{-3}}{\sqrt{500^2+\left(\omega\cdot10\cdot10^{-3}\right)^2}}=\frac{1}{\sqrt{2}}\space\Longleftrightarrow\space$$ $$\omega=50000\space\text{rad/sec}\tag5$$
Which is the same as:
$$\frac{25000}{\pi}\space\text{Hz}\approx7957.75\space\text{Hz}\tag6$$