7
\$\begingroup\$

enter image description here

enter image description here

Images from Art of Electronics 1st edition, p. 58 (Horowitz and Hill)

Both of these circuits accept an AC signal that is centered around 0V.

The first (Figure 2.16) is supposedly coming from a previous amplifier stage where the output voltage is conveniently situated between the positive and negative voltage supplies.  The second (Figure 2.17) has been capacitively coupled and so (I presume) it is also sitting around 0V and fluctuating into both positive and negative territory.  The only difference between the two as nearly as my novice eyes can see is that one is coupled and one is not.  Horowitz and Hill state:

Warning: You must always provide a DC path for base bias current, even if it goes only to ground.  In the preceding circuit it is assumed that the signal source has a DC path to ground.  If not (e.g., if the signal is capacitively coupled), you must provide a resistor to ground. (Art of Electronics 1st Ed, p. 58)

I don't understand why both circuits don't need this resistor, and why the capacitor makes it necessary.

\$\endgroup\$
2
  • 1
    \$\begingroup\$ Get a spice program (LTSpice is nice), and simulate 2.17 with and without \$R_B\$. See what happens -- then use that to figure out why you need \$R_B\$. If you get stuck, put an ammeter on the base of the transistor. \$\endgroup\$ Commented Jan 5 at 0:38
  • \$\begingroup\$ WARNING You probably realise already, but it's crucial that you do, that the environments shown are almost "articial" as they show a -Vee DC supply . This is entirely reasonable in giving examples but in probably the majority of situations you'll encounter, Re is ground referenced and in such cases both circuits will clip the output when Vin falls below about 0.6V wrt ground - as per Simon's last graph. || If that was already wholly obvious then nothing to see here, move along :-). |||| The base needs a DC reference point that an AC Vin will vary about. The capacitor removes it. Rb re-adds it \$\endgroup\$ Commented Jan 6 at 11:30

4 Answers 4

8
\$\begingroup\$

Capacitor in series needs a charge path but a discharge path also. The Rb ensures both part of this condition.

Without Rb the capacitor is charged through base only during positive cycle. But nothing allows to discharge the cap back during negative cycle. So the cap becomes fully charged after few periods and no signal passing.

\$\endgroup\$
1
  • \$\begingroup\$ A similar effect happens when an unbalanced load (showing higher impedance in a half-cycle than in other) is capacitively connected to an AC source . The solution is a resistor for DC return. \$\endgroup\$ Commented Jan 4 at 19:46
4
\$\begingroup\$

In the first picture (2.16), no source is shown so the DC level is unknown, but as you refer to,

In the preceding circuit it is assumed that the signal source has a DC path to ground.

some kind of DC path is existing.

In figure 2.17, where a capacitor is explicitly shown, some kind of DC bias path is required. It could have been a standard voltage divider between Vcc and Vee with the base connected inbetween.

The capacitor prohibits the flow of DC current so if it is necessary to establish a DC operating point, some kind of DC bias path is required. In this case a single resistor is used. If no base current is flowing no collector current will flow. Base current would only flow in the beginning unttil the capacitor is charged up.

\$\endgroup\$
2
  • \$\begingroup\$ So if I understand you correctly, that base resistor is necessary to bias the base to the desired voltage and provide base current at the proper level? And we can skip that step in the first circuit because the output of the previous stage is presumed to have already taken care of that? \$\endgroup\$ Commented Jan 4 at 18:37
  • \$\begingroup\$ Yes that is correct. As mentioned, the this bias could have been achieved in other ways aswell. \$\endgroup\$ Commented Jan 4 at 19:06
2
\$\begingroup\$

Ignore the emitter follower for a moment, and focus only on the capacitor and some source of input signal:

schematic

simulate this circuit – Schematic created using CircuitLab

Ask yourself what is potential \$V_B\$ at node B? The answer depends on what initial charge the capacitor has. If C1 starts completely discharged, with no potential difference between A and B, then the answer is:

$$ V_B = V_A + 0V = V_A $$

\$V_B\$ follows \$V_A\$. If \$V_A\$ rises by 1mV, then so will \$V_B\$, and if \$V_A\$ falls by 1mV \$V_B\$ will also fall by 1mV. There's no offset between A and B, so the capacitor is pointless here. You could achieve this behaviour by directly connecting B to A.

The utility of the capacitor is evident when the average DC potentials at A and B are different, creating a potential "gap" that needs bridging. Let's say that \$V_A=+5V\$ average, and \$V_B=+7V\$ average, then you have a gap of 2V to bridge. Charge the capacitor to 2V (more positive at its right end), so now the equation becomes:

$$ V_B = V_A + 2V $$

You still have \$V_B\$ following \$V_A\$ as it changes, but offset by 2V.

The purpose of the capacitor is to "bridge the DC voltage gap" between potentials \$V_A\$ and \$V_B\$ at nodes A and B, while permitting any change in potential \$\Delta V_A\$ to appear at B as an equal change \$\Delta V_B\$. This is called "AC coupling", or you could think of it as "DC blocking", if you like.

It works because A and B can have different average DC potentials, which the capacitor "bridges" by developing a long-term average DC charge and voltage according to \$Q=CV\$, but crucially any changes in potential at A are "copied" to B.

However, you must somehow get the capacitor to charge to 2V (or whatever is the average DC potential difference) in the first place. Clearly this is not possible above, because current \$I_1=0\$. There's no path to permit the DC current necessary to charge the capacitor to any DC potential difference other than zero.

We must somehow coerce the potential at B to whatever long-term value we desire, usually by using a resistance to that very potential:

schematic

simulate this circuit

Here we have a sinusoidal AC input at A provided by V2, centered at an average of +5V DC provided by V1. We want the average potential at B to be +7V DC, which we set by providing a path for DC current via R1 to a source of +7V, thanks to V3.

Start by assuming that there's no AC signal, the amplitude of V2 is zero. Also, the capacitor starts discharged. In this state, there is a DC potential difference of \$7V-5V=2V\$ across R1, causing current \$I_1\$ to flow, which will slowly charge C1. In this DC context, this is a simple RC arrangement in which the capacitor voltage rises exponentially to 2V (orange), and DC current (blue) eventually diminishes to zero:

enter image description here

Any fluctuations at A will still be copied to B, though, and eventually you find that fluctuations at B are centered 2V higher than those at A, because the capacitor's DC voltage eventually reaches a steady 2V:

enter image description here

This behaviour depends on a path existing for DC charging current through the capacitor, a path provided by R1, to a biasing potential V3. Without DC current through C1 to initially charge it, you have no idea what that initial charge is, and you can't predict the "center" average DC potential at B. For this reason, you never see the arrangement on the left below; rather, you'll find some variation on the arrangement to the right:

schematic

simulate this circuit

Op-amp input resistance is infinite, or at worst, very very large, and bias current \$I_{BIAS}\$ is zero, or poorly defined. Consequently, without R1 and some biasing potential, the average DC value of \$V_B\$ is unknown, entirely dependent upon the ambiguous state of charge of C1.

In the context of your question, the thing connected to B is not an op-amp, but an emitter follower. Without DC biasing (left) and with DC biasing (right), it looks like this:

schematic

simulate this circuit

The voltmeters show DC (quiescent) potential at the transistors' bases. On the left, without biasing, clearly DC quiescent base current has charged the capacitor with -11.5V of DC charge. Consequently, Q1's base is near the negative supply potential, and its output (emitter) will be stuck near -12V. Ideally we would like the output to be nearer to 0V, the middle of the -12V to +12V range. This is achieved on the right by biasing base potential using R2 to 0V.

Here are the outputs, emitter potential \$V_{E1}\$ (blue, no biasing) and emitter potential \$V_{E2}\$ (orange, biased near ground):

enter image description here

In your question you called \$R_B\$ (R2 here) a "base resistor". Using that name is misleading, because "base resistor" typically describes a resistor in series with the base, whose role is to limit base current in a common-emitter scenario:

schematic

simulate this circuit

The current-limiting role of R9 is very different from the biasing role of R2 in the prior circuits. \$R_B\$ and \$R_2\$ should be called "biasing" resistors, not "base" resistors. R9 here may be called a "base resistor".

\$\endgroup\$
2
\$\begingroup\$

The magic of The Art of Electronics

I find it hard to imagine what my life would be like if I had not encountered the incredible book by Mr. Horowitz and Hill in the 1980s, and later, Mr. Tom Hayes' accompanying Student Manual. They showed me what I had intuitively sensed - that circuit design could be not as boring as it was presented in textbooks and lecture halls, but rather interesting and engaging, even romantic.

The most valuable quality of these books is not that they give us a lot of knowledge but that they make us think and ask questions like this. That is why I have never seen them just as books but as "idea stimulators." In the days when there was no (mobile) internet, I carried this book, heavy as a brick, with me on vacations to the sea and mountains. The scenario was always the same - I would start reading and after the first few paragraphs, I would stop and start thinking about the idea behind the circuit. That is how I never managed to finish reading them...

After this emotional intro, let's try to uncover the idea behind these two AoE circuits.

What is actually biasing?

Simply put, biasing means adding a constant voltage to the input varying voltage. In this way, we force the transistor to start operating even at zero input voltage. Let's now see how it is implemented in amplifier circuits.

Direct coupling

Base biasing

"Lifting" voltage source: In an emitter follower with a (positive) single power supply, we can do this from the base side by "lifting" the input voltage with a bias voltage. For this purpose, we connect the bias voltage source Vbias in series to the input voltage source Vin. Note that the bias current Ibias flows through the input source; it does not flow through +Vcc.

schematic

simulate this circuit – Schematic created using CircuitLab

STEP 1.1.1

"Lifting" diode: In practical amplifier circuits, "floating" diode elements can "produce" Vbias. Note that in this case, Ibias is produced by +Vcc and it does not flow through Vin.

schematic

simulate this circuit

STEP 1.1.2

Emitter biasing

In a emitter follower with a split power supply, we can bias the transistor from the emitter side but through current (because the emitter voltage is "movable" and it follows the changes in the input voltage). This technique is called "self-emitter biasing" because the transistor is forced to adjust its base current so that to pass the same current through itself.

Emitter resistor: The simpler implementation of this bias technique is through a resistor Re connected between the emitter and negative power supply -Vee. Note that in this NPN configuration, Ibias is produced by the negative power supply and it flows through Vin; in the case of a PNP implementation, Ibias would be produced by the positive power supply.

schematic

simulate this circuit

STEP 1.2.1

Emitter current source: A more sophisticated biasing implementation is through an emitter current source. Now the bias current is absolutely constant and dies not vary when the input voltage varies.

schematic

simulate this circuit

STEP 1.2.2

Emitter voltage source: If we try to put a voltage source in the emitter out of curiosity, the output voltage does not change.

schematic

simulate this circuit

STEP 1.2.3

Capacitive coupling

No current path

In AC amplifiers, a capacitor couples Vin and the base. However, a path for the bias current must still be provided. Otherwise, the capacitor will charge to its maximum value and current flow will cease.

schematic

simulate this circuit

STEP 2.1

Added closing resistor

This is the role of the resistor Rb - to close the path of Ibias.

schematic

simulate this circuit

Visualized voltage drop

Note that Ib causes a voltage VRb = Ibias*Rb to appear across Rb, which adds to the input voltage. Let's replace Rb with a voltmeter with the same internal resistance to see this undesired voltage drop.

schematic

simulate this circuit

STEP 2.3

This is a problem in op-amps with significant input bias currents (see my answer to a related question).

\$\endgroup\$
0

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.