I am given the great circle equations of two paths. The first one is
Longitude = 168 degree.
and the second one is:
tan(Lattitude)=.11 cos(Longitude) + .64 sin(Longitude)
However, I am not sure I understand what these represent.
For example, when I then try to depict these two great circles on a map (For the code below, I use as model the example found here):
library(CircStats) library(geosphere) library(maps) great_circle_1 <- function( lattitude ){ return( 168 ) } great_circle_2 <- function( longitude ){ return( atan( ( 0.11 * cos(longitude * pi / 180) + 0.64 * sin( longitude * pi / 180 )) ) * 180 / pi) } map("world", col="#f2f2f2", fill=TRUE, bg="white", lwd=0.05) lat_c1_1 <- -50 lon_c1_1 <- great_circle_1( lat_c1_1 ) lat_c1_2 <- 90 lon_c1_2 <- great_circle_1( lat_c1_2 ) inter_c1 <- gcIntermediate(c(lon_c1_1, lat_c1_1), c(lon_c1_2, lat_c1_2), n=50, addStartEnd=TRUE) lines(inter_c1) lon_c2_1 <- 150 lat_c2_1 <- great_circle_2(lon_c2_1) lon_c2_2 <- -50 lat_c2_2 <- great_circle_2(lon_c2_2) inter_c2 <- gcIntermediate(c(lon_c2_1, lat_c2_1), c(lon_c2_2, lat_c2_2), n=50, addStartEnd=TRUE) lines(inter_c2) My problem is that contrary to the examples on the website (and what my intuition would dictate), the two grand circles appear as a flat lines (rather than curved ones). I wanted to make sure that this is not due to a comprehension error on my behalf over how to understand the great circle equation as formulated.
I am assuming spherical earth.
I gather that there are different conventions as to the coordinate systems. Since this is a question about conversions, for information, I use the longitude and latitudes as given on google map, for example the original Waterloo has coordinates (50.7167, 4.3833).
