Professional-grade equity research assistant that turns natural-language questions into clear investment briefings. The system blends multi-agent orchestration, retrieval-augmented generation, and live financial data to produce analyst-style reports in seconds.
- Multi-agent LangGraph workflow coordinates routing, market data, sentiment, visualization, and reporting.
- Real-time analytics pull from Yahoo Finance, SEC EDGAR filings, and curated news.
- RAG pipeline stores vectorized filings and market context in ChromaDB for grounded answers.
- Conversation memory in MongoDB keeps 24-hour session history for follow-up questions.
- Bilingual interface automatically supports English and Chinese queries.
- Backend: FastAPI service with async agents, conversation memory, and ingestion scripts.
- AI Orchestration: LangGraph + LangChain agents backed by OpenAI models.
- Data Services: Yahoo Finance adapters, SEC EDGAR scraper, ChromaDB vector store.
- Frontend: React + TypeScript + Tailwind for charts, reports, and session management.
- Python 3.11+
- Node.js 18+
- MongoDB instance
- OpenAI API key
git clone <your-repo-url> cd multi-agent-investment python -m venv .venv . .venv/Scripts/activate # Windows # source .venv/bin/activate # macOS/Linux pip install -r requirements.txt cd frontend && npm install && cd ..Copy .env.template to .env and supply:
OPENAI_API_KEY– OpenAI credential for chat + embeddingsMONGODB_URI– MongoDB connection stringMONGODB_DB_NAME– Database name (defaultinvestment_research)CHROMA_PERSIST_DIR– Vector store path (default./data/chroma)
python -m backend.scripts.init_db python -m backend.scripts.init_ticker_cache# Terminal 1 uvicorn backend.main:app --reload --port 8000 # Terminal 2 cd frontend npm run dev- Web app: http://localhost:3000
- API docs: http://localhost:8000/docs
Web Interface
- Open the frontend.
- Ask: “Analyze Apple’s near-term outlook.”
- Review the generated report, charts, and investor snapshot.
API
curl -X POST http://localhost:8000/api/research/query \ -H "Content-Type: application/json" \ -d '{"query": "What is the investment outlook for NVDA?"}'backend/ FastAPI app, agents, RAG pipeline, services frontend/ React client with charts and report UI assets/ Product screenshots data/ Local caches (vector store, ticker cache) tests/ Workflow and ingestion checks Developer: @Manokil