Skip to content

SanPen/VeraGrid

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

VeraGrid

VeraGrid is a top tier power systems planning and simulation software. As such it has all the static analysis studies that you can think of, plus linear and non-linear optimization functions. Some of these functions are well known, while others you may have never heard of as they are a product of cutting-edge research.

VeraGrid_banner.png VeraGrid

Codacy Badge Documentation Status Build Status DOI Downloads Discord

VeraGrid started in 2015 with a clear objective: create a solid programming library and a user-friendly interface. This straightforward approach sparked many innovations — some driven by the necessity for commercial use, and others fueled by curiosity and research.

Whether you're a pro needing free tools, a researcher wanting a real-world tested platform, a teacher sharing commercial-grade software insights, or a student diving into practical algorithms, VeraGrid's got your back. It's a high quality product made for all of us now and for the future generations.

Installation

VeraGrid is a software made in the Python programming language. Therefore, it needs a Python interpreter installed in your operative system.

The VeraGrid project is divided in three packages:

  • VeraGridEngine: A package with the database and calculations logic.
  • VeraGridServer: A package that serves an API-rest to use VeraGridEngine remotely.
  • VeraGrid: A package that contains the Graphical User Interface (GUI) and operates with VeraGridEngine and VeraGridServer seamlessly.

To install everything, you only need to install the VeraGrid package and the others will be installed as dependencies.

Standalone setup

If you don't know what is this Python thing, we offer a windows installation:

Windows setup

This will install VeraGrid as a normal windows program, and you don't need to worry about any of the previous instructions. Still, if you need some guidance, the following video might be of assistance: Setup tutorial (video).

Package installation

We recommend to install the latest version of Python and then, install VeraGrid with the following terminal command:

pip install VeraGrid 

You may need to use pip3 if you are under Linux or MacOS, both of which come with Python pre-installed already.

Install into an environment

python3 -m venv gc5venv source gc5venv/bin/activate pip install VeraGrid veragrid

Run the graphical user interface

Once you install VeraGrid in your local Python distribution, you can run the graphical user interface with the following terminal command:

veragrid 

If this doesn't work, try:

python -c "from VeraGrid.ExecuteVeraGrid import runVeraGrid; runVeraGrid()" 

You may save this command in a shortcut for easy future access.

Install only the engine

Some of you may only need VeraGrid as a library for some other purpose like batch calculations, AI training or simple scripting. Whatever it may be, you can get the VeraGrid engine with the following terminal command:

pip install VeraGridEngine 

This will install the VeraGridEngine package that is a dependency of VeraGrid.

Again, you may need to use pip3 if you are under Linux or MacOS.

Features

VeraGrid is packed with features:

  • Large collection of devices to model electricity grids
  • AC/DC multi-grid power flow
  • 3-phase unbalanced power flow and short circuit
  • AC/DC multi-grid linear optimal power flow
  • AC linear analysis (PTDF & LODF)
  • AC linear net transfer capacity calculation
  • AC+HVDC optimal net transfer capacity calculation
  • AC/DC Stochastic power flow
  • AC Short circuit
  • AC Continuation power flow
  • Contingency analysis (Power flow and LODF variants)
  • Sigma analysis (one-shot stability analysis)
  • Investments analysis
  • Bus-branch schematic
  • Substation-line map diagram
  • Time series and snapshot for most simulations
  • Overhead tower designer
  • Inputs analysis
  • Model bug report and repair
  • Import many formats (PSSe .raw/rawx, epc, dgs, matpower, pypsa, json, cim, cgmes)
  • Export in many formats (veragrid .xlsx/.veragrid/.json, cgmes, psse .raw/.rawx)

All of these are industry tested algorithms, some of which surpass most commercially available software. The aim is to be a drop-in replacement for the expensive and less usable commercial software, so that you can work, research and learn with it.

Resources

In an effort to ease the simulation and construction of grids, We have included extra materials to work with. These are included in the standalone setups.

Tutorials and examples

Matpower grids

Matpower's excellent formulations and consistency has allowed this and other projects to develop, relying on its sound math. That is why VeraGrid reads Matpower cases out of the box, without you having to do anything special. And of course, VeraGrid solves all Matpower 8 provided grids, solving the continental USA case in about 1 second:

VeraGrid

Find the results at the benchmarks page for more details.

Results simulated with AMD 9750x and 64 GB of RAM under Ubuntu 24.04. All solved using Newton-Raphson, and only using the provided solution that comes with the files when the flat start fails.

Cool right?

API

Since day one, VeraGrid was meant to be used as a library as much as it was meant to be used from the user interface. Following, we include some usage examples, but feel free to check the documentation out where you will find a complete description of the theory, the models and the objects.

Understanding the program structure

VeraGrid structure is composed by objects arranged in a "database" and by "structs" at a deeper level. Learn here why.

All simulations in VeraGrid are handled by the simulation drivers. The structure is as follows:

Any driver is fed with the data model (MultiCircuit object), the respective driver options, and often another object relative to specific inputs for that driver. The driver is run, storing the driver results object. Although this may seem overly complicated, it has proven to be maintainable and very convenient.

Snapshot vs. time series

VeraGrid has dual structure to handle legacy cases (snapshot), as well as cases with many variations (time series)

  • A snapshot is the grid for a particular moment in time. This includes the infrastructure plus the variable values of that infrastructure such as the load, the generation, the rating, etc.

  • The time series record the variations of the magnitudes that can vary. These are applied along with the infrastructure definition.

In VeraGrid, the inputs do not get modified by the simulation results. This very important concept, helps to maintain the independence of the inputs and outputs, allowing the replicability of the results. This key feature is not true for other open-source of commercial programs.

A snapshot or any point of the time series, may be compiled to a NumericalCircuit. This object holds the numerical arrays and matrices of a time step, ready for the numerical methods. For those simulations that require many time steps, a collection of NumericalCircuit is compiled and used.

It may seem that this extra step is redundant. However, the compilation step is composed by mere copy operations, which are fast. This steps benefits greatly the efficiency of the numerical calculations since the arrays are aligned in memory. The VeraGrid data model is object-oriented, while the numerical circuit is array-oriented (despite beign packed into objects)

Loading a grid

import VeraGridEngine as gce # load a grid (.veragrid, .m (Matpower), .raw (PSS/e) .rawx (PSS/e), .epc (PSLF), .dgs (PowerFactory) my_grid = gce.open_file("my_file.veragrid")

In the case of CIM/CGMES, you may need to pass a list of files or a single zip file:

import VeraGridEngine as gce # load a grid from many xml files my_grid = gce.open_file(["grid_EQ.xml", "grid_TP.xml", "grid_SV.xml", ]) # or from a single zip assumed to contain CGMES files my_grid = gce.open_file("my_cgmes_set_of_files.zip") # or load a grid from a combination of xml and zip files assumed to be CGMES my_grid = gce.open_file(["grid_EQ.xml", "grid_TP.xml", "grid_SV.xml", "boundary.zip"])

If you need to explore the CGMEs assets before conversion, you'll need to dive deeper in the API:

import VeraGridEngine as gce fname = "tests/data/grids/CGMES_2_4_15/IEEE 118 Bus v2.zip" logger = gce.Logger() data_parser = gce.CgmesDataParser() data_parser.load_files(files=[fname]) cgmes_circuit = gce.CgmesCircuit(cgmes_version=data_parser.cgmes_version, cgmes_map_areas_like_raw=False, logger=logger) cgmes_circuit.parse_files(data_parser=data_parser) # print all the ac line segment names for ac_line_segment in cgmes_circuit.cgmes_assets.ACLineSegment_list: print(ac_line_segment.name) # print the logs logger.print()

VeraGrid supports many file formats:

  • CIM 16 (.zip and .xml)
  • UCTE.
  • CGMES 2.4.15 and 3.0 (.zip and .xml)
  • PSS/e raw and rawx versions 29 to 35, including USA market exchange RAW-30 specifics.
  • Matpower .m files directly.
  • DigSilent .DGS (not fully compatible)
  • PSLF .EPC (not fully compatible, supports substation coordinates)

Similarly to CGMES you may be able to use the conversion objects to explore the original formats.

Save a grid

import VeraGridEngine as gce # load a grid my_grid = gce.open_file("my_file.veragrid") # save gce.save_file(my_grid, "my_file_2.veragrid")

In the case of saving a model in CGMES mode, we need to specify some extra parameters. To simplify we can use the API function save_cgmes_file:

import VeraGridEngine as gce # load a grid my_grid = gce.open_file("my_file.veragrid") # run power flow (this is optional and it is used to generate the SV profile) pf_results = gce.power_flow(my_grid) # save the grid in CGMES mode gce.save_cgmes_file(grid=my_grid, filename="My_cgmes_model.zip", cgmes_boundary_set_path="path_to_the_boundary_set.zip", cgmes_version=gce.CGMESVersions.v2_4_15, pf_results=pf_results)

Creating a Grid using the API objects

We are going to create a very simple 5-node grid from the excellent book Power System Load Flow Analysis by Lynn Powell.

Lynn 5 buses

import VeraGridEngine as gce # declare a circuit object grid = gce.MultiCircuit() # Add the buses and the generators and loads attached bus1 = gce.Bus('Bus 1', Vnom=20) # bus1.is_slack = True # we may mark the bus a slack grid.add_bus(bus1) # add a generator to the bus 1 gen1 = gce.Generator('Slack Generator', vset=1.0) grid.add_generator(bus1, gen1) # add bus 2 with a load attached bus2 = gce.Bus('Bus 2', Vnom=20) grid.add_bus(bus2) grid.add_load(bus2, gce.Load('load 2', P=40, Q=20)) # add bus 3 with a load attached bus3 = gce.Bus('Bus 3', Vnom=20) grid.add_bus(bus3) grid.add_load(bus3, gce.Load('load 3', P=25, Q=15)) # add bus 4 with a load attached bus4 = gce.Bus('Bus 4', Vnom=20) grid.add_bus(bus4) grid.add_load(bus4, gce.Load('load 4', P=40, Q=20)) # add bus 5 with a load attached bus5 = gce.Bus('Bus 5', Vnom=20) grid.add_bus(bus5) grid.add_load(bus5, gce.Load('load 5', P=50, Q=20)) # add Lines connecting the buses grid.add_line(gce.Line(bus1, bus2, name='line 1-2', r=0.05, x=0.11, b=0.02)) grid.add_line(gce.Line(bus1, bus3, name='line 1-3', r=0.05, x=0.11, b=0.02)) grid.add_line(gce.Line(bus1, bus5, name='line 1-5', r=0.03, x=0.08, b=0.02)) grid.add_line(gce.Line(bus2, bus3, name='line 2-3', r=0.04, x=0.09, b=0.02)) grid.add_line(gce.Line(bus2, bus5, name='line 2-5', r=0.04, x=0.09, b=0.02)) grid.add_line(gce.Line(bus3, bus4, name='line 3-4', r=0.06, x=0.13, b=0.03)) grid.add_line(gce.Line(bus4, bus5, name='line 4-5', r=0.04, x=0.09, b=0.02))

IEEE9

A more complex example comes from the issue 354. In this example we create the IEEE9 bus grid from line and transformer definition information instead of per-unit values:

import numpy as np import VeraGridEngine.api as gce # ieee9 grid grid9 = gce.MultiCircuit('IEEE-9', Sbase=100, fbase=50) # Add the buses bus1 = gce.Bus(name='Bus 1', Vnom=17.16, is_slack=True) bus2 = gce.Bus(name='Bus 2', Vnom=18.45) bus3 = gce.Bus(name='Bus 3', Vnom=14.145) bus4 = gce.Bus(name='Bus 4', Vnom=230) bus5 = gce.Bus(name='Bus 5', Vnom=230) bus6 = gce.Bus(name='Bus 6', Vnom=230) bus7 = gce.Bus(name='Bus 7', Vnom=230) bus8 = gce.Bus(name='Bus 8', Vnom=230) bus9 = gce.Bus(name='Bus 9', Vnom=230) grid9.add_bus(bus1) grid9.add_bus(bus2) grid9.add_bus(bus3) grid9.add_bus(bus4) grid9.add_bus(bus5) grid9.add_bus(bus6) grid9.add_bus(bus7) grid9.add_bus(bus8) grid9.add_bus(bus9) # add generators grid9.add_generator(bus1, gce.Generator(name='Slack Generator', P=0.0, vset=1.0)) grid9.add_generator(bus2, gce.Generator(name='Gen2', P=163, Sbase=100, vset=1.0)) grid9.add_generator(bus3, gce.Generator(name='Gen3', P=85, vset=1.0)) # add loads grid9.add_load(bus5, gce.Load(name='Load 1', P=125, Q=50)) grid9.add_load(bus6, gce.Load(name='Load 2', P=90, Q=30)) grid9.add_load(bus8, gce.Load(name='Load 3', P=100, Q=35)) # add transformers tr1 = gce.Transformer2W(bus_from=bus4, bus_to=bus1, name='T1', HV=230, LV=16.5, nominal_power=247.5, rate=247.5, tap_phase=150 * np.pi / 180) tr1.fill_design_properties(Pcu=0.0, Pfe=0.0, I0=0.0, Vsc=14.3, Sbase=grid9.Sbase) tr2 = gce.Transformer2W(bus_from=bus7, bus_to=bus2, name='T2', HV=230, LV=18, nominal_power=192, rate=192, tap_phase=150 * np.pi / 180) tr2.fill_design_properties(Pcu=0.0, Pfe=0.0, I0=0.0, Vsc=12.0, Sbase=grid9.Sbase) tr3 = gce.Transformer2W(bus_from=bus9, bus_to=bus3, name='T3', HV=230, LV=13.8, nominal_power=128, rate=128, tap_phase=150 * np.pi / 180) tr3.fill_design_properties(Pcu=0.0, Pfe=0.0, I0=0.0, Vsc=7.5, Sbase=grid9.Sbase) grid9.add_transformer2w(tr1) # 0.5236 => 30°#2.618 grid9.add_transformer2w(tr2) # 2.618#2.618#0.5236 grid9.add_transformer2w(tr3) # 0.5236 # add lines l1 = gce.Line(bus_from=bus4, bus_to=bus5, name='line 4-5') l1.fill_design_properties(r_ohm=5.3, x_ohm=45.0, c_nf=1060, length=1.0, Imax=1.0, freq=grid9.fBase, Sbase=grid9.Sbase) l2 = gce.Line(bus_from=bus4, bus_to=bus6, name='line 4-6') l2.fill_design_properties(r_ohm=9.0, x_ohm=48.7, c_nf=950, length=1.0, Imax=1.0, freq=grid9.fBase, Sbase=grid9.Sbase) l3 = gce.Line(bus_from=bus5, bus_to=bus7, name='line 5-7') l3.fill_design_properties(r_ohm=16.9, x_ohm=85.2, c_nf=1840, length=1.0, Imax=1.0, freq=grid9.fBase, Sbase=grid9.Sbase) l4 = gce.Line(bus_from=bus6, bus_to=bus9, name='line 6-9') l4.fill_design_properties(r_ohm=20.6, x_ohm=89.9, c_nf=2150, length=1.0, Imax=1.0, freq=grid9.fBase, Sbase=grid9.Sbase) l5 = gce.Line(bus_from=bus7, bus_to=bus8, name='line 7-8') l5.fill_design_properties(r_ohm=4.5, x_ohm=38.1, c_nf=870, length=1.0, Imax=1.0, freq=grid9.fBase, Sbase=grid9.Sbase) l6 = gce.Line(bus_from=bus8, bus_to=bus9, name='line 8-9') l6.fill_design_properties(r_ohm=6.3, x_ohm=53.3, c_nf=1260, length=1.0, Imax=1.0, freq=grid9.fBase, Sbase=grid9.Sbase) grid9.add_line(l1) grid9.add_line(l2) grid9.add_line(l3) grid9.add_line(l4) grid9.add_line(l5) grid9.add_line(l6) # save (optional) gce.save_file(grid9, "IEEE9.veragrid") # Power flow options = gce.PowerFlowOptions(gce.SolverType.NR, retry_with_other_methods=False, tolerance=1e-6, control_q=False, control_taps_phase=False, control_taps_modules=False, apply_temperature_correction=False, use_stored_guess=False, initialize_angles=True, verbose=False) power_flow = gce.PowerFlowDriver(grid9, options) power_flow.run() # print the results resultsDF = power_flow.results.get_bus_df() resultsDF['V (kV)'] = resultsDF['Vm'] * np.array([bus.Vnom for bus in grid9.buses]) print(resultsDF)

Which yields:

| | Vm (p.u.) | V(kV) | Va (deg) | P (MW) | Q (MVAr) | |-------|-----------|------------|------------|-------------|------------| | Bus 1 | 1 | 17.16 | 0 | 71.63834 | 27.114476 | | Bus 2 | 1 | 18.45 | 9.277313 | 163.000003 | 6.973044 | | Bus 3 | 1 | 14.145 | 4.657059 | 85.000001 | -10.669872 | | Bus 4 | 1.025709 | 235.91303 | 147.776277 | -0.000009 | 0.000006 | | Bus 5 | 0.995498 | 228.96449 | 146.002536 | -125.000009 | -49.999972 | | Bus 6 | 1.01254 | 232.884245 | 146.305199 | -90.000008 | -29.999988 | | Bus 7 | 1.025576 | 235.882375 | 153.715955 | 0.000034 | 0.000033 | | Bus 8 | 1.015629 | 233.594652 | 150.721498 | -100.000018 | -34.999992 | | Bus 9 | 1.032244 | 237.416038 | 151.959026 | 0.000016 | 0.000008 | 

Exactly the same results as the example from the book of the issue.

Power Flow

VeraGrid has the most power flow features in any open-source software. The following table shows the features present in each solver:

Newton Raphson Powell Dog-leg Levenberg-Marquardt Iwamoto Fast-decoupled Gauss-seidel Holomorphic embedding Linear without voltage modules Linear with voltage modules
Local voltage control using a Generator. âś… âś… âś… âś… âś… âś… âś… âś…
Remote voltage control using a Generator. âś… âś… âś… âś… âś…
Generator reactive power limits. âś… âś… âś… âś… âś… âś…
Local and remote voltage control using a transformer's tap changer. âś… âś… âś…
Local active power control using a transformer's tap changer. âś… âś… âś…
Local reactive power control using a transformer's tap changer. âś… âś… âś…
Local and remote AC and DC voltage control using a converter. âś… âś… âś…
Local AC and DC active power control using converter. âś… âś… âś…
Local AC reactive power control using a converter. âś… âś… âś…
3-phase unbalanced. âś… âś… âś…

Using the simplified API:

import os import VeraGridEngine as gce folder = os.path.join('..', 'Grids_and_profiles', 'grids') fname = os.path.join(folder, 'IEEE39_1W.veragrid') main_circuit = gce.open_file(fname) results = gce.power_flow(main_circuit) print(main_circuit.name) print('Converged:', results.converged, 'error:', results.error) print(results.get_bus_df()) print(results.get_branch_df())

Using the more complex library objects:

import os import VeraGridEngine as gce folder = os.path.join('..', 'Grids_and_profiles', 'grids') fname = os.path.join(folder, 'IEEE14_from_raw.veragrid') main_circuit = gce.open_file(fname) options = gce.PowerFlowOptions(gce.SolverType.NR, verbose=False) power_flow = gce.PowerFlowDriver(main_circuit, options) power_flow.run() print(main_circuit.name) print('Converged:', power_flow.results.converged, 'error:', power_flow.results.error) print(power_flow.results.get_bus_df()) print(power_flow.results.get_branch_df())

Output:

IEEE14_from_raw Converged: True error: 5.98e-08 Bus resuts: Vm Va P Q BUS 1 1.06 0.00 232.39 -16.55 BUS 2 1.04 -4.98 18.30 30.86 BUS 3 1.01 -12.73 -94.20 6.08 BUS 4 1.02 -10.31 -47.80 3.90 BUS 5 1.02 -8.77 -7.60 -1.60 BUS 6 1.07 -14.22 -11.20 5.23 BUS 7 1.06 -13.36 0.00 0.00 BUS 8 1.09 -13.36 0.00 17.62 BUS 9 1.06 -14.94 -29.50 -16.60 BUS 10 1.05 -15.10 -9.00 -5.80 BUS 11 1.06 -14.79 -3.50 -1.80 BUS 12 1.06 -15.08 -6.10 -1.60 BUS 13 1.05 -15.16 -13.50 -5.80 BUS 14 1.04 -16.03 -14.90 -5.00 Branch results: Pf Qf Pt Qt loading Ploss Qloss 1_2_1 156.882887 -20.404291 -152.585286 27.676248 15688288652036.908203 4.297600 7.271957 1_5_1 75.510380 3.854989 -72.747507 2.229360 7551037982438.064453 2.762872 6.084349 2_3_1 73.237578 3.560203 -70.914309 1.602232 7323757808601.912109 2.323269 5.162436 2_4_1 56.131495 -1.550352 -54.454837 3.020689 5613149456668.273438 1.676658 1.470337 2_5_1 41.516214 1.170996 -40.612460 -2.099032 4151621353697.657715 0.903753 -0.928036 3_4_1 -23.285691 4.473114 23.659136 -4.835650 -2328569062725.765625 0.373445 -0.362537 4_5_1 -61.158231 15.823642 61.672651 -14.201004 -6115823108351.800781 0.514420 1.622637 6_11_1 7.353277 3.560471 -7.297904 -3.444512 735327693069.753418 0.055373 0.115959 6_12_1 7.786067 2.503414 -7.714258 -2.353959 778606687855.751465 0.071809 0.149455 6_13_1 17.747977 7.216574 -17.535891 -6.798912 1774797671583.112793 0.212085 0.417662 7_8_1 -0.000000 -17.162967 0.000000 17.623448 -0.001718 0.000000 0.460481 7_9_1 28.074179 5.778690 -28.074179 -4.976621 2807417855964.891602 0.000000 0.802069 9_10_1 5.227551 4.219139 -5.214676 -4.184938 522755058212.680359 0.012875 0.034201 9_14_1 9.426380 3.610007 -9.310226 -3.362932 942638030136.208130 0.116154 0.247075 10_11_1 -3.785324 -1.615061 3.797906 1.644513 -378532426869.186707 0.012581 0.029451 12_13_1 1.614258 0.753959 -1.607959 -0.748260 161425771970.211853 0.006298 0.005698 13_14_1 5.643852 1.747172 -5.589774 -1.637068 564385175482.526855 0.054078 0.110105 4_7_1 28.074176 -9.681066 -28.074176 11.384281 2807417645485.176270 0.000000 1.703214 4_9_1 16.079758 -0.427611 -16.079758 1.732322 1607975830176.256104 0.000000 1.304711 5_6_1 44.087319 12.470682 -44.087319 -8.049520 4408731875605.579102 0.000000 4.421161 

Inputs analysis

VeraGrid can perform a summary of the inputs with the InputsAnalysisDriver:

import os import VeraGridEngine as gce folder = os.path.join('..', 'Grids_and_profiles', 'grids') fname = os.path.join(folder, 'IEEE 118 Bus - ntc_areas.veragrid') main_circuit = gce.open_file(fname) drv = gce.InputsAnalysisDriver(grid=main_circuit) mdl = drv.results.mdl(gce.ResultTypes.AreaAnalysis) df = mdl.to_df() print(df)

The results per area:

 P Pgen Pload Pbatt Pstagen Pmin Pmax Q Qmin Qmax IEEE118-3 -57.0 906.0 963.0 0.0 0.0 -150000.0 150000.0 -345.0 -2595.0 3071.0 IEEE118-2 -117.0 1369.0 1486.0 0.0 0.0 -140000.0 140000.0 -477.0 -1431.0 2196.0 IEEE118-1 174.0 1967.0 1793.0 0.0 0.0 -250000.0 250000.0 -616.0 -3319.0 6510.0 

Linear analysis

We can run an PTDF equivalent of the power flow with the linear analysis drivers:

import os import VeraGridEngine as gce folder = os.path.join('..', 'Grids_and_profiles', 'grids') fname = os.path.join(folder, 'IEEE 5 Bus.xlsx') main_circuit = gce.open_file(fname) # snapshot results = gce.linear_power_flow(grid=main_circuit) print("Bus results:\n", results.get_bus_df()) print("Branch results:\n", results.get_branch_df()) print("PTDF:\n", results.mdl(gce.ResultTypes.PTDF).to_df()) print("LODF:\n", results.mdl(gce.ResultTypes.LODF).to_df())

Simulating with a more detailed control of the objects:

import os import VeraGridEngine as gce folder = os.path.join('..', 'Grids_and_profiles', 'grids') fname = os.path.join(folder, 'IEEE 5 Bus.xlsx') main_circuit = gce.open_file(fname) options_ = gce.LinearAnalysisOptions(distribute_slack=False, correct_values=True) # snapshot sn_driver = gce.LinearAnalysisDriver(grid=main_circuit, options=options_) sn_driver.run() print("Bus results:\n", sn_driver.results.get_bus_df()) print("Branch results:\n", sn_driver.results.get_branch_df()) print("PTDF:\n", sn_driver.results.mdl(gce.ResultTypes.PTDF).to_df()) print("LODF:\n", sn_driver.results.mdl(gce.ResultTypes.LODF).to_df())

Output:

Bus results: Vm Va P Q Bus 0 1.0 0.0 2.1000 0.0 Bus 1 1.0 0.0 -3.0000 0.0 Bus 2 1.0 0.0 0.2349 0.0 Bus 3 1.0 0.0 -0.9999 0.0 Bus 4 1.0 0.0 4.6651 0.0 Branch results: Pf loading Branch 0-1 2.497192 0.624298 Branch 0-3 1.867892 0.832394 Branch 0-4 -2.265084 -0.828791 Branch 1-2 -0.502808 -0.391900 Branch 2-3 -0.267908 -0.774300 Branch 3-4 -2.400016 -1.000006 PTDF: Bus 0 Bus 1 Bus 2 Bus 3 Bus 4 Branch 0-1 0.193917 -0.475895 -0.348989 0.0 0.159538 Branch 0-3 0.437588 0.258343 0.189451 0.0 0.360010 Branch 0-4 0.368495 0.217552 0.159538 0.0 -0.519548 Branch 1-2 0.193917 0.524105 -0.348989 0.0 0.159538 Branch 2-3 0.193917 0.524105 0.651011 0.0 0.159538 Branch 3-4 -0.368495 -0.217552 -0.159538 0.0 -0.480452 LODF: Branch 0-1 Branch 0-3 Branch 0-4 Branch 1-2 Branch 2-3 Branch 3-4 Branch 0-1 -1.000000 0.344795 0.307071 -1.000000 -1.000000 -0.307071 Branch 0-3 0.542857 -1.000000 0.692929 0.542857 0.542857 -0.692929 Branch 0-4 0.457143 0.655205 -1.000000 0.457143 0.457143 1.000000 Branch 1-2 -1.000000 0.344795 0.307071 -1.000000 -1.000000 -0.307071 Branch 2-3 -1.000000 0.344795 0.307071 -1.000000 -1.000000 -0.307071 Branch 3-4 -0.457143 -0.655205 1.000000 -0.457143 -0.457143 -1.000000 

Linear vs non-linear analysis comparison

Now let's make a comparison between the linear flows and the non-linear flows from Newton-Raphson:

import os from matplotlib import pyplot as plt import VeraGridEngine as gce plt.style.use('fivethirtyeight') folder = os.path.join('..', 'Grids_and_profiles', 'grids') fname = os.path.join(folder, 'IEEE39_1W.veragrid') main_circuit = gce.open_file(fname) ptdf_driver = gce.LinearAnalysisTimeSeriesDriver(grid=main_circuit) ptdf_driver.run() pf_options_ = gce.PowerFlowOptions(solver_type=gce.SolverType.NR) ts_driver = gce.PowerFlowTimeSeriesDriver(grid=main_circuit, options=pf_options_) ts_driver.run() fig = plt.figure(figsize=(30, 6)) ax1 = fig.add_subplot(131) ax1.set_title('Newton-Raphson based flow') ax1.plot(ts_driver.results.Sf.real) ax1.set_ylabel('MW') ax1.set_xlabel('Time') ax2 = fig.add_subplot(132) ax2.set_title('PTDF based flow') ax2.plot(ptdf_driver.results.Sf.real) ax2.set_ylabel('MW') ax2.set_xlabel('Time') ax3 = fig.add_subplot(133) ax3.set_title('Difference') diff = ts_driver.results.Sf.real - ptdf_driver.results.Sf.real ax3.plot(diff) ax3.set_ylabel('MW') ax3.set_xlabel('Time') fig.set_tight_layout(tight=True) plt.show()

PTDF flows comparison.png

Linear optimization

import os import numpy as np import VeraGridEngine as gce folder = os.path.join('..', 'Grids_and_profiles', 'grids') fname = os.path.join(folder, 'IEEE39_1W.veragrid') main_circuit = gce.open_file(fname) # declare the snapshot opf opf_options = gce.OptimalPowerFlowOptions(mip_solver=gce.MIPSolvers.HIGHS) opf_driver = gce.OptimalPowerFlowDriver(grid=main_circuit, options=opf_options) print('Solving...') opf_driver.run() print("Status:", opf_driver.results.converged) print('Angles\n', np.angle(opf_driver.results.voltage)) print('Branch loading\n', opf_driver.results.loading) print('Gen power\n', opf_driver.results.generator_power) print('Nodal prices \n', opf_driver.results.bus_shadow_prices) # declare the time series opf opf_ts_driver = gce.OptimalPowerFlowTimeSeriesDriver(grid=main_circuit) print('Solving...') opf_ts_driver.run() print("Status:", opf_ts_driver.results.converged) print('Angles\n', np.angle(opf_ts_driver.results.voltage)) print('Branch loading\n', opf_ts_driver.results.loading) print('Gen power\n', opf_ts_driver.results.generator_power) print('Nodal prices \n', opf_ts_driver.results.bus_shadow_prices)

Run a linear optimization and verify with power flow

Often ties, you want to dispatch the generation using a linear optimization, to then verify the results using the power exact power flow. With VeraGrid, to do so is as easy as passing the results of the OPF into the PowerFlowDriver:

import os import VeraGridEngine as gce folder = os.path.join('..', 'Grids_and_profiles', 'grids') fname = os.path.join(folder, 'IEEE39_1W.veragrid') main_circuit = gce.open_file(fname) # declare the snapshot opf opf_driver = gce.OptimalPowerFlowDriver(grid=main_circuit) opf_driver.run() # create the power flow driver, with the OPF results pf_options = gce.PowerFlowOptions(solver_type=gce.SolverType.NR) pf_driver = gce.PowerFlowDriver(grid=main_circuit, options=pf_options, opf_results=opf_driver.results) pf_driver.run() # Print results print('Converged:', pf_driver.results.converged, '\nError:', pf_driver.results.error) print(pf_driver.results.get_bus_df()) print(pf_driver.results.get_branch_df())

Output:

Converged: True Error: 5.553046023010211e-09 Vm Va P Q bus 0 1.027155 -21.975050 -97.600000 -44.200000 bus 1 1.018508 -17.390151 -0.000000 0.000000 bus 2 0.979093 -21.508225 -322.000000 -2.400000 bus 3 0.934378 -19.864840 -500.000000 -184.000000 bus 4 0.931325 -16.488297 -0.000000 0.000000 bus 5 0.932254 -15.184820 -0.000000 0.000000 bus 6 0.925633 -18.287327 -233.800000 -84.000000 bus 7 0.927339 -19.147130 -522.000000 -176.600000 bus 8 1.008660 -21.901696 -6.500000 66.600000 bus 9 0.933232 -12.563826 0.000000 0.000000 bus 10 0.931530 -13.489535 0.000000 -0.000000 bus 11 0.911143 -13.919901 -8.530000 -88.000000 bus 12 0.932956 -14.194410 -0.000000 0.000000 bus 13 0.939456 -18.071831 95.000000 80.000000 bus 14 0.947946 -24.501201 -320.000000 -153.000000 bus 15 0.969547 -25.398839 -329.000000 -32.300000 bus 16 0.975073 -24.329289 -0.000000 0.000000 bus 17 0.974923 -23.729596 -158.000000 -30.000000 bus 18 0.978267 -32.658992 0.000000 -0.000000 bus 19 0.976962 -38.320718 -680.000000 -103.000000 bus 20 0.975875 -21.466364 -274.000000 -115.000000 bus 21 1.005675 -15.328363 0.000000 0.000000 bus 22 1.005660 -16.083736 -247.500000 -84.600000 bus 23 0.977732 -24.971264 -308.600000 92.200000 bus 24 1.008485 -18.545657 -224.000000 -47.200000 bus 25 1.000534 -20.462156 -139.000000 -17.000000 bus 26 0.981806 -23.507873 -281.000000 -75.500000 bus 27 1.008509 -15.740313 -206.000000 -27.600000 bus 28 1.012968 -12.490634 -283.500000 -26.900000 bus 29 1.049900 -8.627698 900.000000 251.046579 bus 30 0.982000 0.000000 959.172868 323.252930 bus 31 0.945335 -0.791018 900.000000 150.000000 bus 32 0.997200 -32.044975 80.000000 129.407620 bus 33 1.006817 -38.408267 0.000000 167.000000 bus 34 1.039299 -8.255317 900.000000 300.000000 bus 35 1.060037 -8.077926 550.259634 240.000000 bus 36 1.027500 -16.918435 128.970365 82.680976 bus 37 1.026500 -4.776516 900.000000 103.207961 bus 38 1.030000 -23.362551 -204.000000 6.956520 Pf Qf Pt Qt loading Ploss Qloss branch 0 -199.490166 9.886924 200.882852 -66.631030 -33.248361 1.392685 -56.744105 branch 1 101.890166 -54.086924 -101.789768 -22.751166 10.189017 0.100398 -76.838090 branch 2 494.939507 226.957177 -491.146020 -208.562681 98.987901 3.793487 18.394496 branch 3 204.177641 -52.633324 -201.227524 41.260633 40.835528 2.950117 -11.372692 branch 4 -900.000000 -107.692823 900.000000 251.046579 -100.000000 0.000000 143.353757 branch 5 -110.112636 203.416014 110.898270 -210.820460 -22.022527 0.785633 -7.404446 branch 6 279.258656 2.746666 -278.361852 -12.311738 55.851731 0.896804 -9.565072 branch 7 -396.736291 53.024640 398.210339 -41.118140 -66.122715 1.474048 11.906501 branch 8 -214.161979 -26.204180 214.585979 20.909705 -42.832396 0.424000 -5.294474 branch 9 -757.052621 31.704768 758.376760 -18.259085 -63.087718 1.324139 13.445683 branch 10 358.842282 9.413372 -357.652308 -5.501385 39.871365 1.189974 3.911986 branch 11 510.748653 42.617618 -508.932128 -24.515536 56.749850 1.816525 18.102081 branch 12 -309.952545 33.292523 310.738787 -36.144659 -64.573447 0.786242 -2.852137 branch 13 -959.172868 -57.651055 959.172868 323.252930 -53.287382 -0.000000 265.601874 branch 14 275.132128 -59.484464 -274.764014 57.022428 30.570236 0.368114 -2.462036 branch 15 110.416322 -228.121043 -108.890865 216.489512 12.268480 1.525457 -11.631531 branch 16 102.390865 -149.889512 -102.210232 29.707685 11.376763 0.180633 -120.181827 branch 17 327.473237 5.932303 -326.980326 -6.970962 54.578873 0.492911 -1.038659 branch 18 572.526763 -42.245014 -571.014280 52.157064 95.421127 1.512483 9.912050 branch 19 -900.000000 36.312711 900.000000 150.000000 -100.000000 0.000000 186.312711 branch 20 -16.202399 -42.051495 16.241539 43.115621 -3.240480 0.039140 1.064126 branch 21 7.672399 -45.948505 -7.630574 47.085615 1.534480 0.041825 1.137109 branch 22 578.644854 -99.242678 -575.095683 123.970310 96.440809 3.549172 24.727632 branch 23 455.509704 -64.880015 -451.229578 83.883725 75.918284 4.280126 19.003709 branch 24 131.229578 -236.883725 -130.530951 228.460261 21.871596 0.698627 -8.423463 branch 25 -201.616968 -48.791645 201.933110 40.123973 -33.602828 0.316142 -8.667672 branch 26 610.218277 -68.716891 -603.829849 117.741029 101.703046 6.388428 49.024138 branch 27 -480.680339 -12.436131 482.646709 21.510035 -80.113390 1.966370 9.073904 branch 28 -126.390019 -130.815594 126.492978 126.394116 -21.065003 0.102959 -4.421477 branch 29 -120.254199 6.410659 120.361852 -17.688262 -20.042367 0.107653 -11.277602 branch 30 -81.678911 -46.534633 81.783480 17.137675 -13.613152 0.104569 -29.396957 branch 31 683.666914 8.361328 -680.247614 59.047728 75.962990 3.419300 67.409057 branch 32 -79.837065 -126.102358 80.000000 129.407620 -8.870785 0.162935 3.305263 branch 33 0.247614 -162.047728 0.000000 167.000000 0.027513 0.247614 4.952272 branch 34 -756.646709 -136.510035 761.585858 197.760507 -84.071857 4.939149 61.250472 branch 35 138.414142 -16.911352 -138.300144 0.065486 23.069024 0.113998 -16.845866 branch 36 -900.000000 -180.849155 900.000000 300.000000 -100.000000 0.000000 119.150845 branch 37 439.456180 68.098749 -435.092978 -34.194116 73.242697 4.363202 33.904632 branch 38 -548.656035 -152.764235 550.259634 240.000000 -60.961782 1.603599 87.235765 branch 39 106.064510 -10.937025 -105.702431 -38.989055 17.677418 0.362078 -49.926080 branch 40 -128.836985 -77.523608 128.970365 82.680976 -14.315221 0.133380 5.157368 branch 41 364.790468 90.170222 -362.783480 -92.637675 60.798411 2.006988 -2.467453 branch 42 -174.673027 -32.815129 175.985257 -31.448155 -29.112171 1.312230 -64.263284 branch 43 -223.415010 -35.366038 226.271920 -37.606217 -37.235835 2.856910 -72.972254 branch 44 -381.985257 3.848155 383.997464 -7.582852 -63.664210 2.012206 -3.734697 branch 45 -893.769383 18.289069 900.000000 103.207961 -74.480782 6.230617 121.497030 

Hydro linear OPF

The following example loads and runs the linear optimization for a system that integrates fluid elements into a regular electrical grid.

import os import VeraGridEngine as gce folder = os.path.join('..', 'Grids_and_profiles', 'grids') fname = os.path.join(folder, 'hydro_simple.veragrid') grid = gce.open_file(fname) # Run the simulation opf_driver = gce.OptimalPowerFlowTimeSeriesDriver(grid=grid) print('Solving...') opf_driver.run() print('Gen power\n', opf_driver.results.generator_power) print('Branch loading\n', opf_driver.results.loading) print('Reservoir level\n', opf_driver.results.fluid_node_current_level)

Output:

OPF results: time | p2x_1_gen | pump_1_gen | turbine_1_gen | slack_gen ------------------- | --------- | ---------- | ------------- | --------- 2023-01-01 00:00:00 | 0.0 | -6.8237821 | 6.0 | 11.823782 2023-01-01 01:00:00 | 0.0 | -6.8237821 | 6.0 | 11.823782 2023-01-01 02:00:00 | 0.0 | -6.8237821 | 6.0 | 11.823782 2023-01-01 03:00:00 | 0.0 | -6.8237821 | 6.0 | 11.823782 2023-01-01 04:00:00 | 0.0 | -6.8237821 | 6.0 | 11.823782 2023-01-01 05:00:00 | 0.0 | -6.8237821 | 6.0 | 11.823782 2023-01-01 06:00:00 | 0.0 | -6.8237821 | 6.0 | 11.823782 2023-01-01 07:00:00 | 0.0 | -6.8237821 | 6.0 | 11.823782 2023-01-01 08:00:00 | 0.0 | -6.8237821 | 6.0 | 11.823782 2023-01-01 09:00:00 | 0.0 | -6.8237821 | 6.0 | 11.823782 time | line1 | line2 | line3 | line4 ------------------- | ------ | ----- | --------- | ----- 2023-01-01 00:00:00 | 100.0 | 0.0 | 68.237821 | 40.0 2023-01-01 01:00:00 | 100.0 | 0.0 | 68.237821 | 40.0 2023-01-01 02:00:00 | 100.0 | 0.0 | 68.237821 | 40.0 2023-01-01 03:00:00 | 100.0 | 0.0 | 68.237821 | 40.0 2023-01-01 04:00:00 | 100.0 | 0.0 | 68.237821 | 40.0 2023-01-01 05:00:00 | 100.0 | 0.0 | 68.237821 | 40.0 2023-01-01 06:00:00 | 100.0 | 0.0 | 68.237821 | 40.0 2023-01-01 07:00:00 | 100.0 | 0.0 | 68.237821 | 40.0 2023-01-01 08:00:00 | 100.0 | 0.0 | 68.237821 | 40.0 2023-01-01 09:00:00 | 100.0 | 0.0 | 68.237821 | 40.0 time | f1 | f2 | f3 | f4 ------------------- | ---------- | --- | --- | ---------- 2023-01-01 00:00:00 | 49.998977 | 0.0 | 0.0 | 50.001022 2023-01-01 01:00:00 | 49.997954 | 0.0 | 0.0 | 50.002046 2023-01-01 02:00:00 | 49.996931 | 0.0 | 0.0 | 50.003068 2023-01-01 03:00:00 | 49.995906 | 0.0 | 0.0 | 50.004093 2023-01-01 04:00:00 | 49.994884 | 0.0 | 0.0 | 50.005116 2023-01-01 05:00:00 | 49.993860 | 0.0 | 0.0 | 50.006139 2023-01-01 06:00:00 | 49.992838 | 0.0 | 0.0 | 50.007162 2023-01-01 07:00:00 | 49.991814 | 0.0 | 0.0 | 50.008185 2023-01-01 08:00:00 | 49.990792 | 0.0 | 0.0 | 50.009208 2023-01-01 09:00:00 | 49.989768 | 0.0 | 0.0 | 50.010231 

Short circuit

VeraGrid has unbalanced short circuit calculations. Now let's run a line-ground short circuit in the third bus of the South island of New Zealand grid example from reference book Computer Analysis of Power Systems by J. Arrillaga and C.P. Arnold

import os import VeraGridEngine as gce folder = os.path.join('..', 'Grids_and_profiles', 'grids') fname = os.path.join(folder, 'South Island of New Zealand.veragrid') grid = gce.open_file(filename=fname) # Define fault index explicitly fault_index = 2 # Run a Line-Ground short circuit on the bus at index 2 # Since we do not provide any power flow results, it will run one for us results = gce.short_circuit(grid, fault_index, fault_type=gce.FaultType.LG) print("Short circuit power: ", results.SCpower[fault_index])

A more elaborated way to run the simulation, controlling all the steps:

import os import VeraGridEngine as gce folder = os.path.join('..', 'Grids_and_profiles', 'grids') fname = os.path.join(folder, 'South Island of New Zealand.veragrid') grid = gce.open_file(filename=fname) pf_options = gce.PowerFlowOptions() pf = gce.PowerFlowDriver(grid, pf_options) pf.run() fault_index = 2 sc_options = gce.ShortCircuitOptions() grid.add_short_circuit_definition( gce.ShortCircuitEvent( device=grid.buses[fault_index], fault_type=gce.FaultType.LG, method=gce.MethodShortCircuit.sequences, phases=gce.PhasesShortCircuit.a ) ) sc = gce.ShortCircuitDriver(grid, options=sc_options, pf_options=pf_options, pf_results=pf.results, pf_results3ph=None) sc.run() print("Short circuit power: ", sc.results.SCpower[fault_index])

Output:

Short circuit power: -217.00 MW - 680.35j MVAr 

Sequence voltage, currents and powers are also available.

Continuation power flow

VeraGrid can run continuation power flows (voltage collapse studies)

import os from matplotlib import pyplot as plt import VeraGridEngine as gce plt.style.use('fivethirtyeight') folder = os.path.join('..', 'Grids_and_profiles', 'grids') fname = os.path.join(folder, 'South Island of New Zealand.veragrid') # open the grid file main_circuit = gce.open_file(fname) # Run the continuation power flow with the default options # Since we do not provide any power flow results, it will run one for us results = gce.continuation_power_flow(grid=main_circuit, factor=2.0, stop_at=gce.CpfStopAt.Full) # plot the results fig = plt.figure(figsize=(18, 6)) ax1 = fig.add_subplot(121) res = results.mdl(gce.ResultTypes.BusActivePower) res.plot(ax=ax1) ax2 = fig.add_subplot(122) res = results.mdl(gce.ResultTypes.BusVoltageModule) res.plot(ax=ax2) plt.tight_layout() plt.show()

A more elaborated way to run the simulation, controlling all the steps:

import os from matplotlib import pyplot as plt import VeraGridEngine as gce plt.style.use('fivethirtyeight') folder = os.path.join('..', 'Grids_and_profiles', 'grids') fname = os.path.join(folder, 'South Island of New Zealand.veragrid') # open the grid file main_circuit = gce.FileOpen(fname).open() # we need to initialize with a power flow solution pf_options = gce.PowerFlowOptions() power_flow = gce.PowerFlowDriver(grid=main_circuit, options=pf_options) power_flow.run() # declare the CPF options vc_options = gce.ContinuationPowerFlowOptions(step=0.001, approximation_order=gce.CpfParametrization.ArcLength, adapt_step=True, step_min=0.00001, step_max=0.2, error_tol=1e-3, tol=1e-6, max_it=20, stop_at=gce.CpfStopAt.Full, verbose=False) # We compose the target direction factor = 2.0 base_power = power_flow.results.Sbus / main_circuit.Sbase vc_inputs = gce.ContinuationPowerFlowInput(Sbase=base_power, Vbase=power_flow.results.voltage, Starget=base_power * factor) # declare the CPF driver and run vc = gce.ContinuationPowerFlowDriver(grid=main_circuit, options=vc_options, inputs=vc_inputs, pf_options=pf_options) vc.run() # plot the results fig = plt.figure(figsize=(18, 6)) ax1 = fig.add_subplot(121) res = vc.results.mdl(gce.ResultTypes.BusActivePower) res.plot(ax=ax1) ax2 = fig.add_subplot(122) res = vc.results.mdl(gce.ResultTypes.BusVoltageModule) res.plot(ax=ax2) plt.tight_layout() plt.show()

cpf_south_island_new_zealand.png

Contingency analysis

GriCal has contingency simulations, and it features a quite flexible way of defining contingencies. Firs you define a contingency group, and then define individual events that are assigned to that contingency group. The simulation then tries all the contingency groups and apply the events registered in each group:

import os import VeraGridEngine as gce folder = os.path.join('Grids_and_profiles', 'grids') fname = os.path.join(folder, 'IEEE 5 Bus.xlsx') main_circuit = gce.open_file(fname) branches = main_circuit.get_branches() # manually generate the contingencies for i, br in enumerate(branches): # add a contingency group group = gce.ContingencyGroup(name="contingency {}".format(i + 1)) main_circuit.add_contingency_group(group) # add the branch contingency to the groups, only groups are failed at once con = gce.Contingency(device=br, name=br.name, group=group) main_circuit.add_contingency(con) # add a special contingency group = gce.ContingencyGroup(name="Special contingency") main_circuit.add_contingency_group(group) main_circuit.add_contingency(gce.Contingency(device=branches[3], name=branches[3].name, group=group)) main_circuit.add_contingency(gce.Contingency(device=branches[5], name=branches[5].name, group=group)) pf_options = gce.PowerFlowOptions(solver_type=gce.SolverType.NR) # declare the contingency options options_ = gce.ContingencyAnalysisOptions(use_provided_flows=False, Pf=None, contingency_method=gce.ContingencyMethod.PowerFlow, # if no power flow options are provided # a linear power flow is used pf_options=pf_options) # Get all the defined contingency groups from the circuit contingency_groups = main_circuit.get_contingency_groups() # Pass the list of contingency groups as required linear_multiple_contingencies = gce.LinearMultiContingencies(grid=main_circuit, contingency_groups_used=contingency_groups) simulation = gce.ContingencyAnalysisDriver(grid=main_circuit, options=options_, linear_multiple_contingencies=linear_multiple_contingencies) simulation.run() # print results df = simulation.results.mdl(gce.ResultTypes.BranchActivePowerFrom).to_df() print("Contingency flows:\n", df)

Output:

Contingency flows: Branch 0-1 Branch 0-3 Branch 0-4 Branch 1-2 Branch 2-3 Branch 3-4 # contingency 1 0.000000 322.256814 -112.256814 -300.000000 -277.616985 -350.438026 # contingency 2 314.174885 0.000000 -104.174887 11.387545 34.758624 -358.359122 # contingency 3 180.382705 29.617295 0.000000 -120.547317 -97.293581 -460.040537 # contingency 4 303.046401 157.540574 -250.586975 0.000000 23.490000 -214.130663 # contingency 5 278.818887 170.710914 -239.529801 -23.378976 0.000000 -225.076976 # contingency 6 323.104522 352.002620 -465.107139 20.157096 43.521763 0.000000 # Special contingency 303.046401 372.060738 -465.107139 0.000000 23.490000 0.000000 

This simulation can also be done for time series.

Contingency analysis time series

To perform the contingency analysis of a time series, it's easier to directly usi the API:

import os import VeraGridEngine as gce folder = os.path.join('Grids_and_profiles', 'grids') fname = os.path.join(folder, 'IEEE39_1W.veragrid') main_circuit = gce.open_file(fname) results = gce.contingencies_ts(circuit=main_circuit, detailed_massive_report=False, contingency_deadband=0.0, contingency_method=gce.ContingencyMethod.PowerFlow)

Note that the grid must have the declared contingencies saved already. Also note that the results are statistics, and you will not get a cube because for large grids that demands terabytes of RAM memory.

State estimation

Now lets program the example from the state estimation reference book State Estimation in Electric Power Systems by A. Monticelli.

import VeraGridEngine as gce m_circuit = gce.MultiCircuit() b1 = gce.Bus('B1', is_slack=True) b2 = gce.Bus('B2') b3 = gce.Bus('B3') br1 = gce.Line(b1, b2, name='Br1', r=0.01, x=0.03, rate=100.0) br2 = gce.Line(b1, b3, name='Br2', r=0.02, x=0.05, rate=100.0) br3 = gce.Line(b2, b3, name='Br3', r=0.03, x=0.08, rate=100.0) # add measurements m_circuit.add_pf_measurement(gce.PfMeasurement(0.888, 0.008, br1)) m_circuit.add_pf_measurement(gce.PfMeasurement(1.173, 0.008, br2)) m_circuit.add_qf_measurement(gce.QfMeasurement(0.568, 0.008, br1)) m_circuit.add_qf_measurement(gce.QfMeasurement(0.663, 0.008, br2)) m_circuit.add_pi_measurement(gce.PiMeasurement(-0.501, 0.01, b2)) m_circuit.add_qi_measurement(gce.QiMeasurement(-0.286, 0.01, b2)) m_circuit.add_vm_measurement(gce.VmMeasurement(1.006, 0.004, b1)) m_circuit.add_vm_measurement(gce.VmMeasurement(0.968, 0.004, b2)) m_circuit.add_bus(b1) m_circuit.add_bus(b2) m_circuit.add_bus(b3) m_circuit.add_line(br1) m_circuit.add_line(br2) m_circuit.add_line(br3) # Declare the simulation driver and run se = gce.StateEstimationDriver(circuit=m_circuit) se.run() print(se.results.get_bus_df()) print(se.results.get_branch_df())

Output:

 Vm Va P Q B1 0.999629 0.000000 2.064016 1.22644 B2 0.974156 -1.247547 0.000000 0.00000 B3 0.943890 -2.745717 0.000000 0.00000 Pf Qf Pt Qt loading Ploss Qloss Br1 89.299199 55.882169 -88.188659 -52.550550 89.299199 1.110540 3.331619 Br2 117.102446 66.761871 -113.465724 -57.670065 117.102446 3.636722 9.091805 Br3 38.591163 22.775597 -37.956374 -21.082828 38.591163 0.634789 1.692770 

Export the results

A simple function is available to export the results of a driver.

import os import VeraGridEngine as gce fname = os.path.join("data", "grids", "IEEE39_1W.veragrid") grid = gce.open_file(fname) # create the driver pf_driver = gce.PowerFlowTimeSeriesDriver(grid=grid, options=gce.PowerFlowOptions(), time_indices=grid.get_all_time_indices()) # run pf_driver.run() # Save the driver results in a zip file with CSV files inside gce.export_drivers(drivers_list=[pf_driver], file_name="IEEE39_1W_results.zip")

You could save many drivers in the same zip file passing then into the list drivers_list.

Also there is a function to save from the results objects themselves:

import os import VeraGridEngine as gce fname = os.path.join("data", "grids", "IEEE39_1W.veragrid") grid = gce.open_file(fname) # run with the API shortcut functions pf_results = gce.power_flow(grid) pf_ts_results = gce.power_flow_ts(grid) # Save the driver results in a zip file with CSV files inside gce.export_results(results_list=[pf_results, pf_ts_results], file_name="IEEE39_1W_results.zip")

Client - Server operation

To use the veragrid server, you need to install the VeraGridServer python package. Once this is done, the veragridservercommand will be available on the system. To launch the server, simply type veragridserver. This will launch a VeraGrid server on the machine, on port 8000. This is https://localhost:8000

An example on how to send a grid from a script to the server:

import os import asyncio import VeraGridEngine as gce # path to your file fname = os.path.join('..', '..', '..', 'Grids_and_profiles', 'grids', "IEEE57.veragrid") # read veragrid file grid_ = gce.open_file(fname) # define instruction for the server instruction = gce.RemoteInstruction(operation=gce.SimulationTypes.NoSim) # generate json to send model_data = gce.gather_model_as_jsons_for_communication(circuit=grid_, instruction=instruction) # get the sever certificate gce.get_certificate(base_url="https://localhost:8000", certificate_path=gce.get_certificate_path(), pwd="") # send json reply_from_server = asyncio.get_event_loop().run_until_complete( gce.send_json_data(json_data=model_data, endpoint_url="https://localhost:8000/upload", certificate=gce.get_certificate_path()) ) print(reply_from_server)

Tests

VeraGrid uses pytest for automatic software testing.

If you make changes to VeraGrid that you plan to submit, first make sure that all tests are still passing. You can do this locally with pytest.

If you have added new functionality, you should also add a new function that tests this functionality. pytest automatically detects all functions in the src/tests folder that start with test_ and are located in a file that also starts with test_ as relevant test cases. Unit test (for pytest) are included in src/tests. As defined in pytest.ini, all files matching test_*.py are executed by running pytest.

Files matching *_test.py are not executed; they were not formatted specifically for pytest but were mostly done for manual testing and documentation purposes.

Additional tests should be developed for each new and existing feature. pytest should be run before each commit to prevent easily detectable bugs.

Bug reporting

You have found a bug in VeraGrid or have a suggestion for a new functionality? Then get in touch with us by opening up an issue on the issue board to discuss possible new developments with the community and the maintainers.

Contributing

All contributions to the VeraGrid repository are made through pull requests to the devel branch. You can either submit a pull request from the develop branch of your fork or create a special feature branch that you keep the changes on. A feature branch is the way to go if you have multiple issues that you are working on in parallel and want to submit with separate pull requests. If you only have small, one-time changes to submit, you can also use the devel branch to submit your pull request.

However, it is best to discuss your contribution before the pull request is ready to be officially submitted. We only accept high quality contributions that align with the project design. Those are heavily reviewed, and you may expect joint work with us if your proposal is deemed good enough.

An easier alternative to contribute is to use the VeraGrid objects and functions to produce your contribution in a script-like fashion. Again, if that meets the functional and quality standards that we impose, we'll take care of the integration.

Contributions like a typo fixes must be addressed via issues since we don't allow those as pull requests.

All contributions must come with testing.

Contact

License

VeraGrid is licensed under the Mozilla Public License 2.0 (MPLv2)

In practical terms this means that:

  • You can use VeraGrid for commercial work.
  • You can sell commercial services based on VeraGrid.
  • If you distribute VeraGrid, you don't need to distribute VeraGrid's source code. However, with python in practice you do.
  • VeraGrid license does not propagate, even if you use VeraGrid or pieces of it in your code. However, you must retain the individual files licensing.

Nonetheless, read the license carefully.

Disclaimer

All trademarks mentioned in the documentation or the source code belong to their respective owners.