Skip to content

gsurma/digit_recognizer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Digit Recognizer

Python Jupyter Notebook with Convolutional Neural Network digit recognizer implemented in Keras. It's Google Colab ready.

Part of the Kaggle competition.

Submitted Kernel with 0.995 score.

Check out corresponding Medium article:

Digit Recognizer - Introduction to Kaggle Competitions with Image Classification Task (0.995)

Data

Dataset: MNIST Handwritten digits

Description: Classification of handwritten digits, 10 classes (0-9).

Training: 37.8k (0.9) images

Validation: 4.2k (0.1) images

Testing: 28k images

Model

_________________________________________________________________ Layer (type) Output Shape Param # ================================================================= conv2d_22 (Conv2D) (None, 28, 28, 32) 832 _________________________________________________________________ conv2d_23 (Conv2D) (None, 28, 28, 32) 25632 _________________________________________________________________ max_pooling2d_11 (MaxPooling (None, 14, 14, 32) 0 _________________________________________________________________ dropout_7 (Dropout) (None, 14, 14, 32) 0 _________________________________________________________________ conv2d_24 (Conv2D) (None, 14, 14, 64) 18496 _________________________________________________________________ conv2d_25 (Conv2D) (None, 14, 14, 64) 36928 _________________________________________________________________ max_pooling2d_12 (MaxPooling (None, 7, 7, 64) 0 _________________________________________________________________ dropout_8 (Dropout) (None, 7, 7, 64) 0 _________________________________________________________________ flatten_4 (Flatten) (None, 3136) 0 _________________________________________________________________ dense_8 (Dense) (None, 8192) 25698304 _________________________________________________________________ dropout_9 (Dropout) (None, 8192) 0 _________________________________________________________________ dense_9 (Dense) (None, 2048) 16779264 _________________________________________________________________ dropout_10 (Dropout) (None, 2048) 0 _________________________________________________________________ dense_10 (Dense) (None, 10) 20490 ================================================================= Total params: 42,579,946 Trainable params: 42,579,946 Non-trainable params: 0 _________________________________________________________________ 

Training

Results

Kaggle score: 0.995

Author

Greg (Grzegorz) Surma

PORTFOLIO

GITHUB

BLOG