Hand written digit recognition using Logistic Regression, kernel SVM with PCA/LDA dimensionality reduction, and Deep Neural Network (Lenet-5 architecture) for MINST dataset.
python3 main.py --Method Lenet- Parameters
- Method - Classifiers. Default :- 'Lenet'
python3 main.py --Method LR --DimRed LDA - Parameters
- Method - Classifiers. Default :- 'Lenet'
- DimRed - Dimensionality Reduction technique. Option : 'PCA/LDA' Default :- 'PCA'
python3 main.py --Method SVM --DimRed LDA --Kernel Polynomial- Parameters
- Method - Classifiers. Default :- 'Lenet'
- DimRed - Dimensionality Reduction technique. Option : 'PCA/LDA' Default :- 'PCA'
- DimRed - kernel for Kernel SVM. Option : 'Polynomial/RBF' Default :- 'Linear'
| Accuracy | Confusion Matrix |
|---|---|
![]() | ![]() |
| Dim Red. | Accuracy | Confusion |
|---|---|---|
| PCA | ![]() | ![]() |
| LDA | ![]() | ![]() |
| Kernel | PCA | LDA |
|---|---|---|
| Linear | ![]() | ![]() |
| Polynomial | ![]() | ![]() |
| RBF | ![]() | ![]() |











