Welcome to the official Python library for Runpod API & SDK.
- Table of Contents
- π» | Installation
- β‘ | Serverless Worker (SDK)
- π | API Language Library (GraphQL Wrapper)
- π | Directory
- π€ | Community and Contributing
# Install with pip pip install runpod # Install with uv (faster alternative) uv add runpodTo get the latest changes that haven't been released to PyPI yet:
# Install latest development version from main branch with pip pip install git+https://github.com/runpod/runpod-python.git # Install with uv uv add git+https://github.com/runpod/runpod-python.git # Install a specific branch pip install git+https://github.com/runpod/runpod-python.git@branch-name # Install a specific tag/release pip install git+https://github.com/runpod/runpod-python.git@v1.0.0 # Install in editable mode for development git clone https://github.com/runpod/runpod-python.git cd runpod-python pip install -e .Python 3.8 or higher is required to use the latest version of this package.
This python package can also be used to create a serverless worker that can be deployed to Runpod as a custom endpoint API.
Create a python script in your project that contains your model definition and the Runpod worker start code. Run this python code as your default container start command:
# my_worker.py import runpod def is_even(job): job_input = job["input"] the_number = job_input["number"] if not isinstance(the_number, int): return {"error": "Silly human, you need to pass an integer."} if the_number % 2 == 0: return True return False runpod.serverless.start({"handler": is_even})Make sure that this file is ran when your container starts. This can be accomplished by calling it in the docker command when you set up a template at console.runpod.io/serverless/user/templates or by setting it as the default command in your Dockerfile.
See our blog post for creating a basic Serverless API, or view the details docs for more information.
You can also test your worker locally before deploying it to Runpod. This is useful for debugging and testing.
python my_worker.py --rp_serve_apiWhen interacting with the Runpod API you can use this library to make requests to the API.
import runpod runpod.api_key = "your_runpod_api_key_found_under_settings"You can interact with Runpod endpoints via a run or run_sync method.
endpoint = runpod.Endpoint("ENDPOINT_ID") run_request = endpoint.run( {"your_model_input_key": "your_model_input_value"} ) # Check the status of the endpoint run request print(run_request.status()) # Get the output of the endpoint run request, blocking until the endpoint run is complete. print(run_request.output())endpoint = runpod.Endpoint("ENDPOINT_ID") run_request = endpoint.run_sync( {"your_model_input_key": "your_model_input_value"} ) # Returns the job results if completed within 90 seconds, otherwise, returns the job status. print(run_request )The SDK supports multiple ways to set API keys:
1. Global API Key (Default)
import runpod # Set global API key runpod.api_key = "your_runpod_api_key" # All endpoints will use this key by default endpoint = runpod.Endpoint("ENDPOINT_ID") result = endpoint.run_sync({"input": "data"})2. Endpoint-Specific API Key
# Create endpoint with its own API key endpoint = runpod.Endpoint("ENDPOINT_ID", api_key="specific_api_key") # This endpoint will always use the provided API key result = endpoint.run_sync({"input": "data"})The SDK uses this precedence order (highest to lowest):
- Endpoint instance API key (if provided to
Endpoint()) - Global API key (set via
runpod.api_key)
import runpod # Example showing precedence runpod.api_key = "GLOBAL_KEY" # This endpoint uses GLOBAL_KEY endpoint1 = runpod.Endpoint("ENDPOINT_ID") # This endpoint uses ENDPOINT_KEY (overrides global) endpoint2 = runpod.Endpoint("ENDPOINT_ID", api_key="ENDPOINT_KEY") # All requests from endpoint2 will use ENDPOINT_KEY result = endpoint2.run_sync({"input": "data"})Each Endpoint instance maintains its own API key, making concurrent operations safe:
import threading import runpod def process_request(api_key, endpoint_id, input_data): # Each thread gets its own Endpoint instance endpoint = runpod.Endpoint(endpoint_id, api_key=api_key) return endpoint.run_sync(input_data) # Safe concurrent usage with different API keys threads = [] for customer in customers: t = threading.Thread( target=process_request, args=(customer["api_key"], customer["endpoint_id"], customer["input"]) ) threads.append(t) t.start()import runpod runpod.api_key = "your_runpod_api_key_found_under_settings" # Get all my pods pods = runpod.get_pods() # Get a specific pod pod = runpod.get_pod(pod.id) # Create a pod with GPU pod = runpod.create_pod("test", "runpod/stack", "NVIDIA GeForce RTX 3070") # Create a pod with CPU pod = runpod.create_pod("test", "runpod/stack", instance_id="cpu3c-2-4") # Stop the pod runpod.stop_pod(pod.id) # Resume the pod runpod.resume_pod(pod.id) # Terminate the pod runpod.terminate_pod(pod.id). βββ docs # Documentation βββ examples # Examples βββ runpod # Package source code β βββ api_wrapper # Language library - API (GraphQL) β βββ cli # Command Line Interface Functions β βββ endpoint # Language library - Endpoints β βββ serverless # SDK - Serverless Worker βββ tests # Package testsWe welcome both pull requests and issues on GitHub. Bug fixes and new features are encouraged, but please read our contributing guide first.
