- Notifications
You must be signed in to change notification settings - Fork 2.8k
Open
Description
Hello, I know this is quite an old repo - but this has been one of the most helpful one for me in recent years, for implementation issues.
I am facing this odd problem with EfficientNet. I am trying to pretrain it from scratch using four classes from the CIFAR10. But the validation accuracy remains extremely low for different combinations of hyperparameters. To be honest, I have tried couple more other popular implementations too - the result remains the same. I double checked my dataloading and preprocessing stages. They don't seem particularly problematic :
def load_dataset(dataset_name, dataset_path, splits, nworkers = 4): if dataset_name.upper() == 'CIFAR10': mean, std = [x / 255 for x in [125.3, 123.0, 113.9]], [x / 255 for x in [63.0, 62.1, 66.7]] dataset = dset.CIFAR10 num_classes = 10 else: assert False, "Unknown dataset : {}".format(dataset_name) cifar_classes = list(set(dataset(root='./data', train=True, download=True).targets)) train_transform = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.AutoAugment(torchvision.transforms.AutoAugmentPolicy.CIFAR10), transforms.ToTensor(), transforms.Normalize(mean, std)]) test_transform = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean, std)]) cifar_train = dataset(dataset_path, train=True, transform=train_transform, download=True) cifar_test = dataset(dataset_path, train=False, transform=test_transform, download=True) train_loaders = [] test_loaders = [] for idx, split in enumerate(splits): classes_set = [*range(split[0], split[1], 1)] print("Classes Set: ", classes_set) indices_train = [i for i, label in enumerate(cifar_train.targets) if label in classes_set] indices_test = [i for i, label in enumerate(cifar_test.targets) if label in classes_set] subset_train = Subset(cifar_train, indices_train) subset_test = Subset(cifar_test, indices_test) train_loader = DataLoader(subset_train, batch_size=batch_size, shuffle=True,) test_loader = DataLoader(subset_test, batch_size=batch_size, shuffle=False) train_loaders.append(train_loader) test_loaders.append(test_loader) return num_classes, train_loaders, test_loadersThese are the other hyperparams I am using:
criterion = nn.CrossEntropyLoss().to(device) optimizer = torch.optim.SGD(pre_model.parameters(), lr=0.001, momentum=0.9) #TODO exp_lr_scheduler = lr_scheduler.CosineAnnealingLR(optimizer, eta_min=0.00001, verbose=True, T_max = 30)My training loop is also nothing out of the ordinary.
I am just very confused about what's going on with this training scheme.
Metadata
Metadata
Assignees
Labels
No labels