An MCP server for GigAPI Timeseries Lake that provides seamless integration with Claude Desktop and other MCP-compatible clients.
run_select_query- Execute SQL queries on your GigAPI cluster.
- Input:
sql(string): The SQL query to execute,database(string): The database to execute against. - All queries are executed safely through GigAPI's HTTP API with NDJSON format.
list_databases- List all databases on your GigAPI cluster.
- Input:
database(string): The database to use for the SHOW DATABASES query (defaults to "mydb").
list_tables- List all tables in a database.
- Input:
database(string): The name of the database.
get_table_schema- Get schema information for a specific table.
- Input:
database(string): The name of the database,table(string): The name of the table.
write_data- Write data using InfluxDB Line Protocol format.
- Input:
database(string): The database to write to,data(string): Data in InfluxDB Line Protocol format.
health_check- Check the health status of the GigAPI server.
ping- Ping the GigAPI server to check connectivity.
# The package will be available on PyPI after the first release # Users can install it directly with uv uv run --with mcp-gigapi --python 3.11 mcp-gigapi --help# Clone the repository git clone https://github.com/gigapi/mcp-gigapi.git cd mcp-gigapi # Install dependencies uv sync- Open the Claude Desktop configuration file located at:
- On macOS:
~/Library/Application Support/Claude/claude_desktop_config.json - On Windows:
%APPDATA%/Claude/claude_desktop_config.json
- On macOS:
- Add the following configuration:
{ "mcpServers": { "mcp-gigapi": { "command": "uv", "args": [ "run", "--with", "mcp-gigapi", "--python", "3.13", "mcp-gigapi" ], "env": { "GIGAPI_HOST": "gigapi.fly.dev", "GIGAPI_PORT": "443", "GIGAPI_TIMEOUT": "30", "GIGAPI_VERIFY_SSL": "true", "GIGAPI_DEFAULT_DATABASE": "mydb" } } } }{ "mcpServers": { "mcp-gigapi": { "command": "uv", "args": [ "run", "--with", "mcp-gigapi", "--python", "3.13", "mcp-gigapi" ], "env": { "GIGAPI_HOST": "localhost", "GIGAPI_PORT": "7971", "GIGAPI_TIMEOUT": "30", "GIGAPI_VERIFY_SSL": "false", "GIGAPI_DEFAULT_DATABASE": "mydb" } } } }{ "mcpServers": { "mcp-gigapi": { "command": "uv", "args": [ "run", "--with", "mcp-gigapi", "--python", "3.13", "mcp-gigapi" ], "env": { "GIGAPI_HOST": "your-gigapi-server", "GIGAPI_PORT": "7971", "GIGAPI_USERNAME": "your_username", "GIGAPI_PASSWORD": "your_password", "GIGAPI_TIMEOUT": "30", "GIGAPI_VERIFY_SSL": "true", "GIGAPI_DEFAULT_DATABASE": "your_database" } } } }- Important: Replace the
uvcommand with the absolute path to youruvexecutable:which uv # Find the path - Restart Claude Desktop to apply the changes.
This MCP server is designed to work with GigAPI's HTTP API endpoints:
POST /query?db={database}&format=ndjson- Execute SQL queries with NDJSON response format- All queries return NDJSON (Newline Delimited JSON) format for efficient streaming
POST /write?db={database}- Write data using InfluxDB Line Protocol
GET /health- Health checkGET /ping- Simple ping
Use InfluxDB Line Protocol format:
curl -X POST "http://localhost:7971/write?db=mydb" --data-binary @/dev/stdin << EOF weather,location=us-midwest,season=summer temperature=82 weather,location=us-east,season=summer temperature=80 weather,location=us-west,season=summer temperature=99 EOFExecute SQL queries via JSON POST with NDJSON format:
curl -X POST "http://localhost:7971/query?db=mydb&format=ndjson" \ -H "Content-Type: application/json" \ -d '{"query": "SELECT time, temperature FROM weather WHERE time >= epoch_ns('\''2025-04-24T00:00:00'\''::TIMESTAMP)"}'# Show databases curl -X POST "http://localhost:7971/query?db=mydb&format=ndjson" \ -H "Content-Type: application/json" \ -d '{"query": "SHOW DATABASES"}' # Show tables curl -X POST "http://localhost:7971/query?db=mydb&format=ndjson" \ -H "Content-Type: application/json" \ -d '{"query": "SHOW TABLES"}' # Count records curl -X POST "http://localhost:7971/query?db=mydb&format=ndjson" \ -H "Content-Type: application/json" \ -d '{"query": "SELECT count(*), avg(temperature) FROM weather"}'GIGAPI_HOST: The hostname of your GigAPI serverGIGAPI_PORT: The port number of your GigAPI server (default: 7971)
GIGAPI_USERNAMEorGIGAPI_USER: The username for authentication (if required)GIGAPI_PASSWORDorGIGAPI_PASS: The password for authentication (if required)GIGAPI_TIMEOUT: Request timeout in seconds (default: 30)GIGAPI_VERIFY_SSL: Enable/disable SSL certificate verification (default: true)GIGAPI_DEFAULT_DATABASE: Default database to use for queries (default: mydb)GIGAPI_MCP_SERVER_TRANSPORT: Sets the transport method for the MCP server (default: stdio)GIGAPI_ENABLED: Enable/disable GigAPI functionality (default: true)
# Required variables GIGAPI_HOST=localhost GIGAPI_PORT=7971 # Optional: Override defaults for local development GIGAPI_VERIFY_SSL=false GIGAPI_TIMEOUT=60 GIGAPI_DEFAULT_DATABASE=mydb# Required variables GIGAPI_HOST=your-gigapi-server GIGAPI_PORT=7971 GIGAPI_USERNAME=your_username GIGAPI_PASSWORD=your_password # Optional: Production settings GIGAPI_VERIFY_SSL=true GIGAPI_TIMEOUT=30 GIGAPI_DEFAULT_DATABASE=your_databaseGIGAPI_HOST=gigapi.fly.dev GIGAPI_PORT=443 GIGAPI_VERIFY_SSL=true GIGAPI_DEFAULT_DATABASE=mydbGigAPI uses Hive partitioning with the structure:
/data /mydb /weather /date=2025-04-10 /hour=14 *.parquet metadata.json -
Install dependencies:
uv sync --all-extras --dev source .venv/bin/activate -
Create a
.envfile in the root of the repository:GIGAPI_HOST=localhost GIGAPI_PORT=7971 GIGAPI_USERNAME=your_username GIGAPI_PASSWORD=your_password GIGAPI_TIMEOUT=30 GIGAPI_VERIFY_SSL=false GIGAPI_DEFAULT_DATABASE=mydb
-
For testing with the MCP Inspector:
fastmcp dev mcp_gigapi/mcp_server.py
# Run all tests uv run pytest -v # Run only unit tests uv run pytest -v -m "not integration" # Run only integration tests uv run pytest -v -m "integration" # Run linting uv run ruff check . # Test with public demo python test_demo.pyThe repository includes a test script that validates the MCP server against the public GigAPI demo:
python test_demo.pyThis will test:
- ✅ Health check and connectivity
- ✅ Database listing (SHOW DATABASES)
- ✅ Table listing (SHOW TABLES)
- ✅ Data queries (SELECT count(*) FROM table)
- ✅ Sample data retrieval
This package is automatically published to PyPI on each GitHub release. The publishing process is handled by GitHub Actions workflows:
- CI Workflow (
.github/workflows/ci.yml): Runs tests on pull requests and pushes to main - Publish Workflow (
.github/workflows/publish.yml): Publishes to PyPI when a release is created
Once published, users can install the package directly from PyPI:
# Install and run the MCP server uv run --with mcp-gigapi --python 3.11 mcp-gigapiTo publish a new version:
- Update the version in
pyproject.toml - Create a GitHub release
- The workflow will automatically publish to PyPI
See RELEASING.md for detailed release instructions.
- Connection refused: Check that GigAPI is running and the host/port are correct
- Authentication failed: Verify username/password are correct
- SSL certificate errors: Set
GIGAPI_VERIFY_SSL=falsefor self-signed certificates - No databases found: Ensure you're using the correct default database (usually "mydb")
Enable debug logging by setting the log level:
import logging logging.basicConfig(level=logging.DEBUG)Apache-2.0 license
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests
- Submit a pull request
- Issues: GitHub Issues
- Documentation: GigAPI Documentation
