Skip to content

CI: master failing windows py37_np141 builds #27902

@TomAugspurger

Description

@TomAugspurger

e.g https://dev.azure.com/pandas-dev/pandas/_build/results?buildId=15921

================================== FAILURES =================================== ______________________________ test_apply[True] _______________________________ [gw1] win32 -- Python 3.7.4 C:\Miniconda\envs\pandas-dev\python.exe ordered = True @pytest.mark.parametrize("ordered", [True, False]) def test_apply(ordered): # GH 10138 dense = Categorical(list("abc"), ordered=ordered) # 'b' is in the categories but not in the list missing = Categorical(list("aaa"), categories=["a", "b"], ordered=ordered) values = np.arange(len(dense)) df = DataFrame({"missing": missing, "dense": dense, "values": values}) grouped = df.groupby(["missing", "dense"], observed=True) # missing category 'b' should still exist in the output index idx = MultiIndex.from_arrays([missing, dense], names=["missing", "dense"]) expected = DataFrame([0, 1, 2.0], index=idx, columns=["values"]) result = grouped.apply(lambda x: np.mean(x)) > assert_frame_equal(result, expected) E AssertionError: DataFrame are different E E DataFrame shape mismatch E [left]: (3, 3) E [right]: (3, 1) pandas\tests\groupby\test_categorical.py:228: AssertionError ______________________________ test_apply[False] ______________________________ [gw1] win32 -- Python 3.7.4 C:\Miniconda\envs\pandas-dev\python.exe ordered = False @pytest.mark.parametrize("ordered", [True, False]) def test_apply(ordered): # GH 10138 dense = Categorical(list("abc"), ordered=ordered) # 'b' is in the categories but not in the list missing = Categorical(list("aaa"), categories=["a", "b"], ordered=ordered) values = np.arange(len(dense)) df = DataFrame({"missing": missing, "dense": dense, "values": values}) grouped = df.groupby(["missing", "dense"], observed=True) # missing category 'b' should still exist in the output index idx = MultiIndex.from_arrays([missing, dense], names=["missing", "dense"]) expected = DataFrame([0, 1, 2.0], index=idx, columns=["values"]) result = grouped.apply(lambda x: np.mean(x)) > assert_frame_equal(result, expected) E AssertionError: DataFrame are different E E DataFrame shape mismatch E [left]: (3, 3) E [right]: (3, 1) pandas\tests\groupby\test_categorical.py:228: AssertionError

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions