-
- Notifications
You must be signed in to change notification settings - Fork 19.4k
Closed
Description
e.g https://dev.azure.com/pandas-dev/pandas/_build/results?buildId=15921
================================== FAILURES =================================== ______________________________ test_apply[True] _______________________________ [gw1] win32 -- Python 3.7.4 C:\Miniconda\envs\pandas-dev\python.exe ordered = True @pytest.mark.parametrize("ordered", [True, False]) def test_apply(ordered): # GH 10138 dense = Categorical(list("abc"), ordered=ordered) # 'b' is in the categories but not in the list missing = Categorical(list("aaa"), categories=["a", "b"], ordered=ordered) values = np.arange(len(dense)) df = DataFrame({"missing": missing, "dense": dense, "values": values}) grouped = df.groupby(["missing", "dense"], observed=True) # missing category 'b' should still exist in the output index idx = MultiIndex.from_arrays([missing, dense], names=["missing", "dense"]) expected = DataFrame([0, 1, 2.0], index=idx, columns=["values"]) result = grouped.apply(lambda x: np.mean(x)) > assert_frame_equal(result, expected) E AssertionError: DataFrame are different E E DataFrame shape mismatch E [left]: (3, 3) E [right]: (3, 1) pandas\tests\groupby\test_categorical.py:228: AssertionError ______________________________ test_apply[False] ______________________________ [gw1] win32 -- Python 3.7.4 C:\Miniconda\envs\pandas-dev\python.exe ordered = False @pytest.mark.parametrize("ordered", [True, False]) def test_apply(ordered): # GH 10138 dense = Categorical(list("abc"), ordered=ordered) # 'b' is in the categories but not in the list missing = Categorical(list("aaa"), categories=["a", "b"], ordered=ordered) values = np.arange(len(dense)) df = DataFrame({"missing": missing, "dense": dense, "values": values}) grouped = df.groupby(["missing", "dense"], observed=True) # missing category 'b' should still exist in the output index idx = MultiIndex.from_arrays([missing, dense], names=["missing", "dense"]) expected = DataFrame([0, 1, 2.0], index=idx, columns=["values"]) result = grouped.apply(lambda x: np.mean(x)) > assert_frame_equal(result, expected) E AssertionError: DataFrame are different E E DataFrame shape mismatch E [left]: (3, 3) E [right]: (3, 1) pandas\tests\groupby\test_categorical.py:228: AssertionErrorMetadata
Metadata
Assignees
Labels
No labels