Skip to content

Conversation

@sscherfke
Copy link

This is a clean version of #16110 and the last thing I’m going to do with this issue.

@gfyoung
Copy link
Member

gfyoung commented Aug 28, 2017

@sscherfke : This look pretty good (test-wise) save for a minor linting issue, which you can see here:

https://travis-ci.org/pandas-dev/pandas/jobs/269100110#L1809

@codecov
Copy link

codecov bot commented Aug 28, 2017

Codecov Report

Merging #17356 into master will decrease coverage by 0.01%.
The diff coverage is n/a.

Impacted file tree graph

@@ Coverage Diff @@ ## master #17356 +/- ## ========================================== - Coverage 91.03% 91.02% -0.02%  ========================================== Files 162 162 Lines 49567 49567 ========================================== - Hits 45125 45116 -9  - Misses 4442 4451 +9
Flag Coverage Δ
#multiple 88.8% <ø> (ø) ⬆️
#single 40.24% <ø> (-0.07%) ⬇️
Impacted Files Coverage Δ
pandas/io/gbq.py 25% <0%> (-58.34%) ⬇️
pandas/core/frame.py 97.72% <0%> (-0.1%) ⬇️

Continue to review full report at Codecov.

Legend - Click here to learn more
Δ = absolute <relative> (impact), ø = not affected, ? = missing data
Powered by Codecov. Last update 473a7f3...02297a5. Read the comment docs.

@codecov
Copy link

codecov bot commented Aug 28, 2017

Codecov Report

Merging #17356 into master will decrease coverage by 0.01%.
The diff coverage is n/a.

Impacted file tree graph

@@ Coverage Diff @@ ## master #17356 +/- ## ========================================== - Coverage 91.03% 91.02% -0.02%  ========================================== Files 162 162 Lines 49567 49567 ========================================== - Hits 45125 45116 -9  - Misses 4442 4451 +9
Flag Coverage Δ
#multiple 88.8% <ø> (ø) ⬆️
#single 40.24% <ø> (-0.07%) ⬇️
Impacted Files Coverage Δ
pandas/io/gbq.py 25% <0%> (-58.34%) ⬇️
pandas/core/frame.py 97.72% <0%> (-0.1%) ⬇️

Continue to review full report at Codecov.

Legend - Click here to learn more
Δ = absolute <relative> (impact), ø = not affected, ? = missing data
Powered by Codecov. Last update 473a7f3...02297a5. Read the comment docs.

@sscherfke
Copy link
Author

My bad. Fixed it.

@sscherfke
Copy link
Author

Can this PR please be merge? This function computes wrong results since more than half a year by now!

@TomAugspurger
Copy link
Contributor

TomAugspurger commented Sep 4, 2017

From #16110 (comment)

change the definition of tz_convert_single to cpdef int64_t

Can you try that?

@TomAugspurger
Copy link
Contributor

I gave this branch + changing tz_convert_single to a cpdef int64_t and ran through a small benchmark (with profiling enabled):

from datetime import datetime import pytz from pandas import Timestamp import cProfile import pstats dt = datetime(2016, 3, 27, 1) tzinfo = pytz.timezone('CET').localize(dt, is_dst=False).tzinfo result_dt = dt.replace(tzinfo=tzinfo) ts = Timestamp(dt) code = ''' for _ in range(10000):  ts.replace(tzinfo=tzinfo) ''' cProfile.runctx(code, globals(), locals(), "Profile.prof") s = pstats.Stats("Profile.prof") s.strip_dirs().sort_stats("time").print_stats()

Master:

Mon Sep 4 08:16:09 2017 Profile.prof 150005 function calls in 0.104 seconds Ordered by: internal time ncalls tottime percall cumtime percall filename:lineno(function) 10000 0.039 0.000 0.072 0.000 tslib.pyx:4210(tz_convert_single) 10000 0.015 0.000 0.097 0.000 tslib.pyx:677(replace) 20000 0.015 0.000 0.026 0.000 tslib.pyx:1708(_get_zone) 20000 0.009 0.000 0.009 0.000 tslib.pyx:4280(_treat_tz_as_dateutil) 1 0.008 0.008 0.105 0.105 <string>:2(<module>) 10000 0.006 0.000 0.006 0.000 tslib.pyx:110(create_timestamp_from_ts) 10000 0.004 0.000 0.005 0.000 tslib.pyx:4322(_get_dst_info) 20000 0.003 0.000 0.003 0.000 tslib.pyx:1705(_is_utc) 10000 0.001 0.000 0.001 0.000 tslib.pyx:236(_is_tzlocal) 10000 0.001 0.000 0.001 0.000 tslib.pyx:4289(_tz_cache_key) 10000 0.001 0.000 0.001 0.000 tslib.pyx:1043(__get__) 10000 0.001 0.000 0.001 0.000 tslib.pyx:1770(_check_dts_bounds) 10000 0.001 0.000 0.001 0.000 tslib.pyx:1044(__get__) 1 0.000 0.000 0.105 0.105 {built-in method builtins.exec} 1 0.000 0.000 0.000 0.000 tslib.pyx:4402(_unbox_utcoffsets) 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} 1 0.000 0.000 0.000 0.000 tslib.pyx:4276(_treat_tz_as_pytz) 

PR:

Mon Sep 4 08:19:48 2017 Profile.prof 210003 function calls in 0.149 seconds Ordered by: internal time ncalls tottime percall cumtime percall filename:lineno(function) 30000 0.043 0.000 0.043 0.000 {method 'replace' of 'datetime.datetime' objects} 10000 0.030 0.000 0.143 0.000 tslib.pyx:676(replace) 10000 0.020 0.000 0.104 0.000 tslib.pyx:1439(convert_to_tsobject) 10000 0.010 0.000 0.045 0.000 tzinfo.py:179(fromutc) 10000 0.010 0.000 0.010 0.000 tslib.pyx:3966(_delta_to_nanoseconds) 1 0.007 0.007 0.150 0.150 <string>:2(<module>) 10000 0.007 0.000 0.067 0.000 tzinfo.py:189(normalize) 10000 0.006 0.000 0.006 0.000 tslib.pyx:109(create_timestamp_from_ts) 10000 0.004 0.000 0.004 0.000 {built-in method _bisect.bisect_right} 10000 0.002 0.000 0.002 0.000 {built-in method builtins.max} 10000 0.002 0.000 0.002 0.000 tslib.pyx:1745(maybe_get_tz) 10000 0.001 0.000 0.001 0.000 tslib.pyx:1704(_is_utc) 20000 0.001 0.000 0.001 0.000 tslib.pyx:1769(_check_dts_bounds) 10000 0.001 0.000 0.001 0.000 datetime.pxd:144(_pydatetime_to_dts) 10000 0.001 0.000 0.001 0.000 tslib.pyx:1432(_get_utcoffset) 10000 0.001 0.000 0.001 0.000 tslib.pyx:1429(__get__) 10000 0.001 0.000 0.001 0.000 tslib.pyx:1042(__get__) 10000 0.001 0.000 0.001 0.000 tslib.pyx:1330(is_timestamp) 10000 0.001 0.000 0.001 0.000 tslib.pyx:1043(__get__) 1 0.000 0.000 0.150 0.150 {built-in method builtins.exec} 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} 

I'm out of time now, but some quick thoughts:

  • datetime.datetime.replace is now the most expensive function call
  • We hit it 3 times per .replace, can we reduce that?
  • We don't call tz_convert_single now (should re-run this with a non-naive one, but that's good)
@jreback jreback changed the title Fix issue #15683 BUG: Timestamp.replace chaining not compat with datetime.replace Sep 7, 2017
@jreback
Copy link
Contributor

jreback commented Sep 13, 2017

replaced by #17507

@jreback jreback closed this Sep 13, 2017
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

Bug Timezones Timezone data dtype

4 participants