Skip to content
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
Show all changes
17 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
keep collecting arithmetic tests
  • Loading branch information
jbrockmendel committed Oct 10, 2018
commit 1c9b86bc6616f50e7b825c4db9fcd9877bdd3e13
330 changes: 300 additions & 30 deletions pandas/tests/frame/test_arithmetic.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,6 @@
# -*- coding: utf-8 -*-
from collections import deque
from datetime import datetime
import operator

import pytest
Expand All @@ -16,28 +18,86 @@
# Comparisons

class TestFrameComparisons(object):
def test_flex_comparison_nat(self):
# GH 15697, GH 22163 df.eq(pd.NaT) should behave like df == pd.NaT,
# and _definitely_ not be NaN
df = pd.DataFrame([pd.NaT])

result = df == pd.NaT
# result.iloc[0, 0] is a np.bool_ object
assert result.iloc[0, 0].item() is False

result = df.eq(pd.NaT)
assert result.iloc[0, 0].item() is False

result = df != pd.NaT
assert result.iloc[0, 0].item() is True

result = df.ne(pd.NaT)
assert result.iloc[0, 0].item() is True
# Specifically _not_ flex-comparisons

def test_comparison_invalid(self):

def check(df, df2):

for (x, y) in [(df, df2), (df2, df)]:
# we expect the result to match Series comparisons for
# == and !=, inequalities should raise
result = x == y
expected = pd.DataFrame({col: x[col] == y[col]
for col in x.columns},
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

can you parameterize this (next pass ok)

index=x.index, columns=x.columns)
tm.assert_frame_equal(result, expected)

result = x != y
expected = pd.DataFrame({col: x[col] != y[col]
for col in x.columns},
index=x.index, columns=x.columns)
tm.assert_frame_equal(result, expected)

with pytest.raises(TypeError):
x >= y
with pytest.raises(TypeError):
x > y
with pytest.raises(TypeError):
x < y
with pytest.raises(TypeError):
x <= y

# GH4968
# invalid date/int comparisons
df = pd.DataFrame(np.random.randint(10, size=(10, 1)), columns=['a'])
df['dates'] = pd.date_range('20010101', periods=len(df))

df2 = df.copy()
df2['dates'] = df['a']
check(df, df2)

df = pd.DataFrame(np.random.randint(10, size=(10, 2)),
columns=['a', 'b'])
df2 = pd.DataFrame({'a': pd.date_range('20010101', periods=len(df)),
'b': pd.date_range('20100101', periods=len(df))})
check(df, df2)

def test_timestamp_compare(self):
# make sure we can compare Timestamps on the right AND left hand side
# GH#4982
df = pd. DataFrame({'dates1': pd.date_range('20010101', periods=10),
'dates2': pd.date_range('20010102', periods=10),
'intcol': np.random.randint(1000000000, size=10),
'floatcol': np.random.randn(10),
'stringcol': list(tm.rands(10))})
df.loc[np.random.rand(len(df)) > 0.5, 'dates2'] = pd.NaT
ops = {'gt': 'lt', 'lt': 'gt', 'ge': 'le', 'le': 'ge', 'eq': 'eq',
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

should parameterize if you can

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yah, the point of collecting these arithmetic tests is to parametrize/fixturize and especially de-duplicate them in an upcoming pass.

'ne': 'ne'}

for left, right in ops.items():
left_f = getattr(operator, left)
right_f = getattr(operator, right)

# no nats
if left in ['eq', 'ne']:
expected = left_f(df, pd.Timestamp('20010109'))
result = right_f(pd.Timestamp('20010109'), df)
tm.assert_frame_equal(result, expected)
else:
with pytest.raises(TypeError):
left_f(df, pd.Timestamp('20010109'))
with pytest.raises(TypeError):
right_f(pd.Timestamp('20010109'), df)
# nats
expected = left_f(df, pd.Timestamp('nat'))
result = right_f(pd.Timestamp('nat'), df)
tm.assert_frame_equal(result, expected)

def test_mixed_comparison(self):
# GH 13128, GH 22163 != datetime64 vs non-dt64 should be False,
# GH#13128, GH#22163 != datetime64 vs non-dt64 should be False,
# not raise TypeError
# (this appears to be fixed before #22163, not sure when)
# (this appears to be fixed before GH#22163, not sure when)
df = pd.DataFrame([['1989-08-01', 1], ['1989-08-01', 2]])
other = pd.DataFrame([['a', 'b'], ['c', 'd']])

Expand All @@ -47,17 +107,6 @@ def test_mixed_comparison(self):
result = df != other
assert result.all().all()

def test_df_boolean_comparison_error(self):
# GH 4576
# boolean comparisons with a tuple/list give unexpected results
df = pd.DataFrame(np.arange(6).reshape((3, 2)))

# not shape compatible
with pytest.raises(ValueError):
df == (2, 2)
with pytest.raises(ValueError):
df == [2, 2]

def test_df_float_none_comparison(self):
df = pd.DataFrame(np.random.randn(8, 3), index=range(8),
columns=['A', 'B', 'C'])
Expand All @@ -75,6 +124,148 @@ def test_df_string_comparison(self):
tm.assert_frame_equal(df[mask_b], df.loc[0:0, :])
tm.assert_frame_equal(df[-mask_b], df.loc[1:1, :])

def test_df_boolean_comparison_error(self):
# GH#4576
# boolean comparisons with a tuple/list give unexpected results
df = pd.DataFrame(np.arange(6).reshape((3, 2)))

# not shape compatible
with pytest.raises(ValueError):
df == (2, 2)
with pytest.raises(ValueError):
df == [2, 2]


class TestFrameFlexComparisons(object):
# TODO: test_bool_flex_frame needs a better name
def test_bool_flex_frame(self):
data = np.random.randn(5, 3)
other_data = np.random.randn(5, 3)
df = pd.DataFrame(data)
other = pd.DataFrame(other_data)
ndim_5 = np.ones(df.shape + (1, 3))

# Unaligned
def _check_unaligned_frame(meth, op, df, other):
part_o = other.loc[3:, 1:].copy()
rs = meth(part_o)
xp = op(df, part_o.reindex(index=df.index, columns=df.columns))
tm.assert_frame_equal(rs, xp)

# DataFrame
assert df.eq(df).values.all()
assert not df.ne(df).values.any()
for op in ['eq', 'ne', 'gt', 'lt', 'ge', 'le']:
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

needs paramaterization!

f = getattr(df, op)
o = getattr(operator, op)
# No NAs
tm.assert_frame_equal(f(other), o(df, other))
_check_unaligned_frame(f, o, df, other)
# ndarray
tm.assert_frame_equal(f(other.values), o(df, other.values))
# scalar
tm.assert_frame_equal(f(0), o(df, 0))
# NAs
msg = "Unable to coerce to Series/DataFrame"
tm.assert_frame_equal(f(np.nan), o(df, np.nan))
with tm.assert_raises_regex(ValueError, msg):
f(ndim_5)

# Series
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

pull lthis out to a separatate, parameterized test (future PR is ok for these, though since you are moving around, maybe better here)

def _test_seq(df, idx_ser, col_ser):
idx_eq = df.eq(idx_ser, axis=0)
col_eq = df.eq(col_ser)
idx_ne = df.ne(idx_ser, axis=0)
col_ne = df.ne(col_ser)
tm.assert_frame_equal(col_eq, df == pd.Series(col_ser))
tm.assert_frame_equal(col_eq, -col_ne)
tm.assert_frame_equal(idx_eq, -idx_ne)
tm.assert_frame_equal(idx_eq, df.T.eq(idx_ser).T)
tm.assert_frame_equal(col_eq, df.eq(list(col_ser)))
tm.assert_frame_equal(idx_eq, df.eq(pd.Series(idx_ser), axis=0))
tm.assert_frame_equal(idx_eq, df.eq(list(idx_ser), axis=0))

idx_gt = df.gt(idx_ser, axis=0)
col_gt = df.gt(col_ser)
idx_le = df.le(idx_ser, axis=0)
col_le = df.le(col_ser)

tm.assert_frame_equal(col_gt, df > pd.Series(col_ser))
tm.assert_frame_equal(col_gt, -col_le)
tm.assert_frame_equal(idx_gt, -idx_le)
tm.assert_frame_equal(idx_gt, df.T.gt(idx_ser).T)

idx_ge = df.ge(idx_ser, axis=0)
col_ge = df.ge(col_ser)
idx_lt = df.lt(idx_ser, axis=0)
col_lt = df.lt(col_ser)
tm.assert_frame_equal(col_ge, df >= pd.Series(col_ser))
tm.assert_frame_equal(col_ge, -col_lt)
tm.assert_frame_equal(idx_ge, -idx_lt)
tm.assert_frame_equal(idx_ge, df.T.ge(idx_ser).T)

idx_ser = pd.Series(np.random.randn(5))
col_ser = pd.Series(np.random.randn(3))
_test_seq(df, idx_ser, col_ser)

# list/tuple
_test_seq(df, idx_ser.values, col_ser.values)

# NA
df.loc[0, 0] = np.nan
rs = df.eq(df)
assert not rs.loc[0, 0]
rs = df.ne(df)
assert rs.loc[0, 0]
rs = df.gt(df)
assert not rs.loc[0, 0]
rs = df.lt(df)
assert not rs.loc[0, 0]
rs = df.ge(df)
assert not rs.loc[0, 0]
rs = df.le(df)
assert not rs.loc[0, 0]

# complex
arr = np.array([np.nan, 1, 6, np.nan])
arr2 = np.array([2j, np.nan, 7, None])
df = pd.DataFrame({'a': arr})
df2 = pd.DataFrame({'a': arr2})
rs = df.gt(df2)
assert not rs.values.any()
rs = df.ne(df2)
assert rs.values.all()

arr3 = np.array([2j, np.nan, None])
df3 = pd.DataFrame({'a': arr3})
rs = df3.gt(2j)
assert not rs.values.any()

# corner, dtype=object
df1 = pd.DataFrame({'col': ['foo', np.nan, 'bar']})
df2 = pd.DataFrame({'col': ['foo', datetime.now(), 'bar']})
result = df1.ne(df2)
exp = pd.DataFrame({'col': [False, True, False]})
tm.assert_frame_equal(result, exp)

def test_flex_comparison_nat(self):
# GH 15697, GH 22163 df.eq(pd.NaT) should behave like df == pd.NaT,
# and _definitely_ not be NaN
df = pd.DataFrame([pd.NaT])

result = df == pd.NaT
# result.iloc[0, 0] is a np.bool_ object
assert result.iloc[0, 0].item() is False

result = df.eq(pd.NaT)
assert result.iloc[0, 0].item() is False

result = df != pd.NaT
assert result.iloc[0, 0].item() is True

result = df.ne(pd.NaT)
assert result.iloc[0, 0].item() is True

@pytest.mark.parametrize('opname', ['eq', 'ne', 'gt', 'lt', 'ge', 'le'])
def test_df_flex_cmp_constant_return_types(self, opname):
# GH 15077, non-empty DataFrame
Expand Down Expand Up @@ -375,3 +566,82 @@ def test_td64_df_add_int_frame(self):
df - other
with pytest.raises(TypeError):
other - df

def test_arith_mixed(self):

left = pd.DataFrame({'A': ['a', 'b', 'c'],
'B': [1, 2, 3]})

result = left + left
expected = pd.DataFrame({'A': ['aa', 'bb', 'cc'],
'B': [2, 4, 6]})
tm.assert_frame_equal(result, expected)

def test_arith_getitem_commute(self):
df = pd.DataFrame({'A': [1.1, 3.3], 'B': [2.5, -3.9]})

def _test_op(df, op):
result = op(df, 1)

if not df.columns.is_unique:
raise ValueError("Only unique columns supported by this test")

for col in result.columns:
tm.assert_series_equal(result[col], op(df[col], 1))

_test_op(df, operator.add)
_test_op(df, operator.sub)
_test_op(df, operator.mul)
_test_op(df, operator.truediv)
_test_op(df, operator.floordiv)
_test_op(df, operator.pow)

_test_op(df, lambda x, y: y + x)
_test_op(df, lambda x, y: y - x)
_test_op(df, lambda x, y: y * x)
_test_op(df, lambda x, y: y / x)
_test_op(df, lambda x, y: y ** x)

_test_op(df, lambda x, y: x + y)
_test_op(df, lambda x, y: x - y)
_test_op(df, lambda x, y: x * y)
_test_op(df, lambda x, y: x / y)
_test_op(df, lambda x, y: x ** y)

@pytest.mark.parametrize('values', [[1, 2], (1, 2), np.array([1, 2]),
range(1, 3), deque([1, 2])])
def test_arith_alignment_non_pandas_object(self, values):
# GH#17901
df = pd.DataFrame({'A': [1, 1], 'B': [1, 1]})
expected = pd.DataFrame({'A': [2, 2], 'B': [3, 3]})
result = df + values
tm.assert_frame_equal(result, expected)

def test_arith_non_pandas_object(self):
df = pd.DataFrame(np.arange(1, 10, dtype='f8').reshape(3, 3),
columns=['one', 'two', 'three'],
index=['a', 'b', 'c'])

val1 = df.xs('a').values
added = pd.DataFrame(df.values + val1,
index=df.index, columns=df.columns)
tm.assert_frame_equal(df + val1, added)

added = pd.DataFrame((df.values.T + val1).T,
index=df.index, columns=df.columns)
tm.assert_frame_equal(df.add(val1, axis=0), added)

val2 = list(df['two'])

added = pd.DataFrame(df.values + val2,
index=df.index, columns=df.columns)
tm.assert_frame_equal(df + val2, added)

added = pd.DataFrame((df.values.T + val2).T, index=df.index,
columns=df.columns)
tm.assert_frame_equal(df.add(val2, axis='index'), added)

val3 = np.random.rand(*df.shape)
added = pd.DataFrame(df.values + val3,
index=df.index, columns=df.columns)
tm.assert_frame_equal(df.add(val3), added)
Loading