Skip to content
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Next Next commit
BUG: Fixes regression in Series.pow with all-NA double[pyarrow] value…
…s in pandas 3.x (#62520)
  • Loading branch information
fandimeng-fm committed Oct 4, 2025
commit d923031cae39eae7176f42713f14e9f7ec112b92
1 change: 1 addition & 0 deletions doc/source/whatsnew/v3.0.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -1226,6 +1226,7 @@ Other
- Fixed bug in the :meth:`Series.rank` with object dtype and extremely small float values (:issue:`62036`)
- Fixed bug where the :class:`DataFrame` constructor misclassified array-like objects with a ``.name`` attribute as :class:`Series` or :class:`Index` (:issue:`61443`)
- Fixed regression in :meth:`DataFrame.from_records` not initializing subclasses properly (:issue:`57008`)
- Fixed regression in :meth:`Series.pow` on Series with all-NA ``float64[pyarrow]`` values; this now returns Series with :class:`NA` values (:issue:`62520`)

.. ***DO NOT USE THIS SECTION***

Expand Down
2 changes: 1 addition & 1 deletion pandas/core/arrays/arrow/array.py
Original file line number Diff line number Diff line change
Expand Up @@ -1051,7 +1051,7 @@ def _arith_method(self, other, op) -> Self | npt.NDArray[np.object_]:
result = self._evaluate_op_method(other, op, ARROW_ARITHMETIC_FUNCS)
if is_nan_na() and result.dtype.kind == "f":
parr = result._pa_array
mask = pc.is_nan(parr).to_numpy()
mask = pc.is_nan(parr).fill_null(False).to_numpy()
arr = pc.replace_with_mask(parr, mask, pa.scalar(None, type=parr.type))
result = type(self)(arr)
return result
Expand Down
9 changes: 9 additions & 0 deletions pandas/tests/extension/test_arrow.py
Original file line number Diff line number Diff line change
Expand Up @@ -3691,3 +3691,12 @@ def test_setitem_float_nan_is_na(using_nan_is_na):
ser[2] = np.nan
assert isinstance(ser[2], float)
assert np.isnan(ser[2])


def test_pow_with_all_na_float():
# GH#62520

s = pd.Series([None, None], dtype="float64[pyarrow]")
result = s.pow(2)
expected = pd.Series([pd.NA, pd.NA], dtype="float64[pyarrow]")
tm.assert_series_equal(result, expected)
Loading