1
$\begingroup$

For a random variable $X$, $(X^3-1)$ is uniformly distributed in the interval $[0,7]$

I need to find the expected value and variance of $X$

and I know that:

cumulative distribution function: $$F_{X}(x)= \begin{cases} 0&;x < 1\\ \frac{x^3-1}{7}&;1\leq x \leq 2\\ 1&;x>2\\ \end{cases}$$

probability density function:

$$f_{X}(t)= \begin{cases} 0&;t \not\in (1,2)\\ \frac{3x^2}{7}&; t \in (1,2)\\ \end{cases}$$


My attempt:

$(1)$

$$E(X)=\int_{-\infty}^{\infty}t\cdot f_{_X}(t)dt$$

$$=\int_{-\infty}^{1}t\cdot 0dt+\int_{1}^{2}\frac{3t^2}{7}\cdot dt+\int_{2}^{\infty}t\cdot 0dt$$

$$=0+\frac{3}{28}x^4\bigg|_{1}^{2}+0=\boxed{\frac{45}{28}}$$

$(2)$

$$\text{Var}(X)=E(X^2)-(E(X))^2$$

$$E(X^2)=$$

$$E(X)^2=\bigg(\frac{2025}{784}\bigg)$$

Is it correct so far ? how to calculate $E(X^2)?$

$\endgroup$
3
  • 5
    $\begingroup$ Hint: $$E\big[g(X)\big] = \int_{-\infty}^{\infty} g(x)\cdot f(x) \ dx$$ $\endgroup$ Commented Aug 3, 2015 at 18:33
  • $\begingroup$ @jameselmore Your hint is correct but I don't know how to use it $\endgroup$ Commented Aug 3, 2015 at 20:52
  • $\begingroup$ You do the exact same thing as you did for $E[X]$, but the integrand is $t^2\cdot f_X(t)$, instead of $t\cdot f_X(t)$. $\endgroup$ Commented Aug 3, 2015 at 20:54

1 Answer 1

0
$\begingroup$

$$E[g(x)]=\int_{-\infty}^{\infty}g(x)\cdot f(x)dx$$

$$E[X^2]=\int_{-\infty}^{\infty}t^2\cdot f(t)dt$$

$$=\int_{1}^{2}t^2\cdot \frac{3t^2}{7}dt$$ $$=\frac{3}{7}\int_{1}^{2}t^4dt$$ $$=\frac{3}{7}\frac{t^5}{5}\bigg|_{1}^{2}=\frac{31}{5}\frac{3}{7}=\boxed{\frac{93}{35}}$$

$$\text{Var}(X)=\frac{93}{35}-\frac{2025}{784}=\boxed{\frac{291}{3920}}$$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.