0
$\begingroup$

I would like to evaluate the following integral $$\int_{-2}^{-1} \frac{x+1}{x^2(x-1)} dx$$

I tried to solve it by partial fractions as $$\int_{-2}^{-1} \left(\frac2x + \frac{-1}{x^2} + \frac{-2}{x-1} \right)dx $$ and I got $$2\left.\ln{\frac1{x-1}}\right|_{-2}^{-1} $$ it to be $2\ln({3\over 2})$. But the right solution is $2\ln \left({4\over 3} \right)-{1\over 2}$. Where did I go wrong?

$\endgroup$

2 Answers 2

4
$\begingroup$

Your partial fraction decomposition is incorrect. It should be $$\dfrac{x+1}{x^2(x-1)} = - \dfrac1{x^2} - \dfrac2x + \dfrac2{x-1}$$ Hence, \begin{align} \int_{-2}^{-1}\dfrac{x+1}{x^2(x-1)} dx & = - \int_{-2}^{-1}\dfrac{dx}{x^2} - \int_{-2}^{-1}\dfrac{2dx}x + \int_{-2}^{-1}\dfrac{2dx}{x-1}\\ & = \left. \left(\dfrac1x - 2 \log \vert x \vert + 2 \log (\vert x-1 \vert) \right) \right \vert_{-2}^{-1}\\ & = \left( -1 - 0 + 2 \log 2\right) - \left( -\dfrac12 - 2\log2 + 2 \log 3\right)\\ & = -\dfrac12 + 4 \log 2 - 2 \log 3\\ & = -\dfrac12 + 2 \left(2 \log 2 - \log 3 \right)\\ & = -\dfrac12 + 2 \log(4/3)\\ \end{align}

$\endgroup$
0
$\begingroup$

Another idea: to have "nicer limits" and avoid absolute values and disgusting stuff like that, do first substitute $\,u=-x\,\,,\,\,du=-dx\,$ , so:

$$\int_{-2}^{-1}\frac{x+1}{x^2(x-1)}dx=\int_2^1\frac{-u+1}{u^2(-u-1)}(-du)=\int_1^2\frac{u-1}{u^2(u+1)}du=$$

$$=-2\int_1^2\frac{du}{u+1}+2\int_1^2\frac{du}{u}-\int_1^2\frac{du}{u^2}=$$

$$\left.\left(-2\log(u+1)+2\log u+\frac{1}{u}\right)\right|_1^2=-2\log\frac{3}{2}+2\log 2-\frac{1}{2}=2\log\frac{4}{3}-\frac{1}{2}$$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.