Skip to main content
Post Undeleted by user
added 87 characters in body
Source Link
user
  • 163.9k
  • 14
  • 85
  • 158

We have

$$\frac{n^b}{a^n}=e^{b\log n-n\log a}=e^{-n\left(\log a-b\frac{\log n}{n}\right)}\to 0$$

indeed

  • $\log a-b\cdot \frac{\log n}{n} \to \log a-b\cdot 0=\log a>0$

and therefore

  • ${n\cdot \left(\log a-b\cdot \frac{\log n}{n}\right)}\to \infty$

For $\frac{\log n}{n}\to 0$ refer to Prove $\log(x) \lt x^n$ for all $n \gt 0$.

We have

$$\frac{n^b}{a^n}=e^{b\log n-n\log a}=e^{-n\left(\log a-b\frac{\log n}{n}\right)}\to 0$$

indeed

  • $\log a-b\cdot \frac{\log n}{n} \to \log a-b\cdot 0=\log a>0$

and therefore

  • ${n\cdot \left(\log a-b\cdot \frac{\log n}{n}\right)}\to \infty$

We have

$$\frac{n^b}{a^n}=e^{b\log n-n\log a}=e^{-n\left(\log a-b\frac{\log n}{n}\right)}\to 0$$

indeed

  • $\log a-b\cdot \frac{\log n}{n} \to \log a-b\cdot 0=\log a>0$

and therefore

  • ${n\cdot \left(\log a-b\cdot \frac{\log n}{n}\right)}\to \infty$

For $\frac{\log n}{n}\to 0$ refer to Prove $\log(x) \lt x^n$ for all $n \gt 0$.

Post Deleted by user
Post Undeleted by user
added 122 characters in body
Source Link
user
  • 163.9k
  • 14
  • 85
  • 158

$$\frac{n^b}{a^n}=e^{b\log n-n\log a}=e^{-n\left(\log a-b\frac{\log n}{n}\right)}\to e^{-\infty\cdot \left(\log a-b\cdot0\right)}=e^{-\infty}=0$$ We have

$$\frac{n^b}{a^n}=e^{b\log n-n\log a}=e^{-n\left(\log a-b\frac{\log n}{n}\right)}\to 0$$

indeed

  • $\log a-b\cdot \frac{\log n}{n} \to \log a-b\cdot 0=\log a>0$

and therefore

  • ${n\cdot \left(\log a-b\cdot \frac{\log n}{n}\right)}\to \infty$

$$\frac{n^b}{a^n}=e^{b\log n-n\log a}=e^{-n\left(\log a-b\frac{\log n}{n}\right)}\to e^{-\infty\cdot \left(\log a-b\cdot0\right)}=e^{-\infty}=0$$

We have

$$\frac{n^b}{a^n}=e^{b\log n-n\log a}=e^{-n\left(\log a-b\frac{\log n}{n}\right)}\to 0$$

indeed

  • $\log a-b\cdot \frac{\log n}{n} \to \log a-b\cdot 0=\log a>0$

and therefore

  • ${n\cdot \left(\log a-b\cdot \frac{\log n}{n}\right)}\to \infty$
Post Deleted by user
added 6 characters in body
Source Link
user
  • 163.9k
  • 14
  • 85
  • 158

$$\frac{n^b}{a^n}=e^{b\log n-n\log a}=e^{-n\left(\log a-b\frac{\log n}{n}\right)}\to e^{-\infty\left(\log a-b\cdot0\right)}=e^{-\infty}=0$$$$\frac{n^b}{a^n}=e^{b\log n-n\log a}=e^{-n\left(\log a-b\frac{\log n}{n}\right)}\to e^{-\infty\cdot \left(\log a-b\cdot0\right)}=e^{-\infty}=0$$

$$\frac{n^b}{a^n}=e^{b\log n-n\log a}=e^{-n\left(\log a-b\frac{\log n}{n}\right)}\to e^{-\infty\left(\log a-b\cdot0\right)}=e^{-\infty}=0$$

$$\frac{n^b}{a^n}=e^{b\log n-n\log a}=e^{-n\left(\log a-b\frac{\log n}{n}\right)}\to e^{-\infty\cdot \left(\log a-b\cdot0\right)}=e^{-\infty}=0$$

Source Link
user
  • 163.9k
  • 14
  • 85
  • 158
Loading