Skip to main content
3 of 4
added 122 characters in body
user
  • 163.9k
  • 14
  • 85
  • 158

We have

$$\frac{n^b}{a^n}=e^{b\log n-n\log a}=e^{-n\left(\log a-b\frac{\log n}{n}\right)}\to 0$$

indeed

  • $\log a-b\cdot \frac{\log n}{n} \to \log a-b\cdot 0=\log a>0$

and therefore

  • ${n\cdot \left(\log a-b\cdot \frac{\log n}{n}\right)}\to \infty$
user
  • 163.9k
  • 14
  • 85
  • 158