Skip to main content
deleted 76 characters in body
Source Link
Devid
  • 513
  • 2
  • 6
  • 20

I should give the Cartesian Coordinates $(x,y)\in \mathbb{R\times R}$ and Polar Coordinates $(r,\varphi)\in R^+\times [0,2\pi)$ of the following Complex Numbers:

a) $z_{1}=-i$

b) $z_{2}=\sqrt{3}+i$

c) $z_{3}=3\sqrt{2}\cdot e^{- \frac{\pi}{4}i}$

d) $z_{4}=-4e^{\frac{\pi}{3}i}$

How can i find the multiplicative inverse of $z_{1},z_{2},z_{3},z_{4}$ ?


Can someone help me solve this. I found the Cartesian coordinates of a) $(0,-1)$ and b) $(\sqrt{3} \approx1.73, 1)$ but what are the Cartesian coordinates of $z_{3},z_{4}$ and what should i do to find the Polar Coordinates ?

I just got c) i think. I must use the Euler Formula ${ e }^{ iz }=\cos { z+i\sin { z } }$ so it will be $3\sqrt{2}(\cos { (0) } +i\sin { (-\frac { \pi }{ 4 } } )$ right?

I should give the Cartesian Coordinates $(x,y)\in \mathbb{R\times R}$ and Polar Coordinates $(r,\varphi)\in R^+\times [0,2\pi)$ of the following Complex Numbers:

a) $z_{1}=-i$

b) $z_{2}=\sqrt{3}+i$

c) $z_{3}=3\sqrt{2}\cdot e^{- \frac{\pi}{4}i}$

d) $z_{4}=-4e^{\frac{\pi}{3}i}$

How can i find the multiplicative inverse of $z_{1},z_{2},z_{3},z_{4}$ ?


Can someone help me solve this. I found the Cartesian coordinates of a) $(0,-1)$ and b) $(\sqrt{3} \approx1.73, 1)$ but what are the Cartesian coordinates of $z_{3},z_{4}$ and what should i do to find the Polar Coordinates ?

I just got c) i think. I must use the Euler Formula ${ e }^{ iz }=\cos { z+i\sin { z } }$ so it will be $3\sqrt{2}(\cos { (0) } +i\sin { (-\frac { \pi }{ 4 } } )$ right?

I should give the Cartesian Coordinates $(x,y)\in \mathbb{R\times R}$ and Polar Coordinates $(r,\varphi)\in R^+\times [0,2\pi)$ of the following Complex Numbers:

a) $z_{1}=-i$

b) $z_{2}=\sqrt{3}+i$

c) $z_{3}=3\sqrt{2}\cdot e^{- \frac{\pi}{4}i}$

d) $z_{4}=-4e^{\frac{\pi}{3}i}$


Can someone help me solve this. I found the Cartesian coordinates of a) $(0,-1)$ and b) $(\sqrt{3} \approx1.73, 1)$ but what are the Cartesian coordinates of $z_{3},z_{4}$ and what should i do to find the Polar Coordinates ?

I just got c) i think. I must use the Euler Formula ${ e }^{ iz }=\cos { z+i\sin { z } }$ so it will be $3\sqrt{2}(\cos { (0) } +i\sin { (-\frac { \pi }{ 4 } } )$ right?

Multiplicative Inverse
Source Link
Devid
  • 513
  • 2
  • 6
  • 20

I should give the Cartesian Coordinates $(x,y)\in \mathbb{R\times R}$ and Polar Coordinates $(r,\varphi)\in R^+\times [0,2\pi)$ of the following Complex Numbers:

a) $z_{1}=-i$

b) $z_{2}=\sqrt{3}+i$

c) $z_{3}=3\sqrt{2}\cdot e^{- \frac{\pi}{4}i}$

d) $z_{4}=-4e^{\frac{\pi}{3}i}$

How can i find the multiplicative inverse of $z_{1},z_{2},z_{3},z_{4}$ ?


Can someone help me solve this. I found the Cartesian coordinates of a) $(0,-1)$ and b) $(\sqrt{3} \approx1.73, 1)$ but what are the Cartesian coordinates of $z_{3},z_{4}$ and what should i do to find the Polar Coordinates ?

I just got c) i think. I must use the Euler Formula ${ e }^{ iz }=\cos { z+i\sin { z } }$ so it will be $3\sqrt{2}(\cos { (0) } +i\sin { (-\frac { \pi }{ 4 } } )$ right?

I should give the Cartesian Coordinates $(x,y)\in \mathbb{R\times R}$ and Polar Coordinates $(r,\varphi)\in R^+\times [0,2\pi)$ of the following Complex Numbers:

a) $z_{1}=-i$

b) $z_{2}=\sqrt{3}+i$

c) $z_{3}=3\sqrt{2}\cdot e^{- \frac{\pi}{4}i}$

d) $z_{4}=-4e^{\frac{\pi}{3}i}$

Can someone help me solve this. I found the Cartesian coordinates of a) $(0,-1)$ and b) $(\sqrt{3} \approx1.73, 1)$ but what are the Cartesian coordinates of $z_{3},z_{4}$ and what should i do to find the Polar Coordinates ?

I just got c) i think. I must use the Euler Formula ${ e }^{ iz }=\cos { z+i\sin { z } }$ so it will be $3\sqrt{2}(\cos { (0) } +i\sin { (-\frac { \pi }{ 4 } } )$ right?

I should give the Cartesian Coordinates $(x,y)\in \mathbb{R\times R}$ and Polar Coordinates $(r,\varphi)\in R^+\times [0,2\pi)$ of the following Complex Numbers:

a) $z_{1}=-i$

b) $z_{2}=\sqrt{3}+i$

c) $z_{3}=3\sqrt{2}\cdot e^{- \frac{\pi}{4}i}$

d) $z_{4}=-4e^{\frac{\pi}{3}i}$

How can i find the multiplicative inverse of $z_{1},z_{2},z_{3},z_{4}$ ?


Can someone help me solve this. I found the Cartesian coordinates of a) $(0,-1)$ and b) $(\sqrt{3} \approx1.73, 1)$ but what are the Cartesian coordinates of $z_{3},z_{4}$ and what should i do to find the Polar Coordinates ?

I just got c) i think. I must use the Euler Formula ${ e }^{ iz }=\cos { z+i\sin { z } }$ so it will be $3\sqrt{2}(\cos { (0) } +i\sin { (-\frac { \pi }{ 4 } } )$ right?

approximation to 1.73
Source Link
Devid
  • 513
  • 2
  • 6
  • 20

I should give the Cartesian Coordinates $(x,y)\in \mathbb{R\times R}$ and Polar Coordinates $(r,\varphi)\in R^+\times [0,2\pi)$ of the following Complex Numbers:

a) $z_{1}=-i$

b) $z_{2}=\sqrt{3}+i$

c) $z_{3}=3\sqrt{2}\cdot e^{- \frac{\pi}{4}i}$

d) $z_{4}=-4e^{\frac{\pi}{3}i}$

Can someone help me solve this. I found the Cartesian coordinates of a) $(0,-1)$ and b) $(\sqrt{3}=1.73, 1)$$(\sqrt{3} \approx1.73, 1)$ but what are the Cartesian coordinates of $z_{3},z_{4}$ and what should i do to find the Polar Coordinates ?

I just got c) i think. I must use the Euler Formula ${ e }^{ iz }=\cos { z+i\sin { z } }$ so it will be $3\sqrt{2}(\cos { (0) } +i\sin { (-\frac { \pi }{ 4 } } )$ right?

I should give the Cartesian Coordinates $(x,y)\in \mathbb{R\times R}$ and Polar Coordinates $(r,\varphi)\in R^+\times [0,2\pi)$ of the following Complex Numbers:

a) $z_{1}=-i$

b) $z_{2}=\sqrt{3}+i$

c) $z_{3}=3\sqrt{2}\cdot e^{- \frac{\pi}{4}i}$

d) $z_{4}=-4e^{\frac{\pi}{3}i}$

Can someone help me solve this. I found the Cartesian coordinates of a) $(0,-1)$ and b) $(\sqrt{3}=1.73, 1)$ but what are the Cartesian coordinates of $z_{3},z_{4}$ and what should i do to find the Polar Coordinates ?

I just got c) i think. I must use the Euler Formula ${ e }^{ iz }=\cos { z+i\sin { z } }$ so it will be $3\sqrt{2}(\cos { (0) } +i\sin { (-\frac { \pi }{ 4 } } )$ right?

I should give the Cartesian Coordinates $(x,y)\in \mathbb{R\times R}$ and Polar Coordinates $(r,\varphi)\in R^+\times [0,2\pi)$ of the following Complex Numbers:

a) $z_{1}=-i$

b) $z_{2}=\sqrt{3}+i$

c) $z_{3}=3\sqrt{2}\cdot e^{- \frac{\pi}{4}i}$

d) $z_{4}=-4e^{\frac{\pi}{3}i}$

Can someone help me solve this. I found the Cartesian coordinates of a) $(0,-1)$ and b) $(\sqrt{3} \approx1.73, 1)$ but what are the Cartesian coordinates of $z_{3},z_{4}$ and what should i do to find the Polar Coordinates ?

I just got c) i think. I must use the Euler Formula ${ e }^{ iz }=\cos { z+i\sin { z } }$ so it will be $3\sqrt{2}(\cos { (0) } +i\sin { (-\frac { \pi }{ 4 } } )$ right?

added 3 characters in body
Source Link
Devid
  • 513
  • 2
  • 6
  • 20
Loading
Source Link
Devid
  • 513
  • 2
  • 6
  • 20
Loading