0
$\begingroup$

I should give the Cartesian Coordinates $(x,y)\in \mathbb{R\times R}$ and Polar Coordinates $(r,\varphi)\in R^+\times [0,2\pi)$ of the following Complex Numbers:

a) $z_{1}=-i$

b) $z_{2}=\sqrt{3}+i$

c) $z_{3}=3\sqrt{2}\cdot e^{- \frac{\pi}{4}i}$

d) $z_{4}=-4e^{\frac{\pi}{3}i}$


Can someone help me solve this. I found the Cartesian coordinates of a) $(0,-1)$ and b) $(\sqrt{3} \approx1.73, 1)$ but what are the Cartesian coordinates of $z_{3},z_{4}$ and what should i do to find the Polar Coordinates ?

I just got c) i think. I must use the Euler Formula ${ e }^{ iz }=\cos { z+i\sin { z } }$ so it will be $3\sqrt{2}(\cos { (0) } +i\sin { (-\frac { \pi }{ 4 } } )$ right?

$\endgroup$
3
  • 1
    $\begingroup$ For c, you are close, but the $z$ on the right is the same in both places. It should be $\frac \pi 4$ $\endgroup$ Commented Feb 2, 2013 at 17:41
  • 1
    $\begingroup$ A nitpick only, but please don't say things like "$\sqrt{3}=1.73$"--it causes many on this site near-physical anguish. It's okay just to say "$\sqrt{3}$" and not give the approximation, or (if you'd like) to say "$\sqrt{3}\approx 17.3$" with \approx to get that $\approx$ symbol. $\endgroup$ Commented Feb 2, 2013 at 17:45
  • $\begingroup$ @RossMillikan thanks,now i see $\cos{(-\frac{\pi}{4})}$ $\endgroup$ Commented Feb 2, 2013 at 18:03

3 Answers 3

3
$\begingroup$

We know if $z$ is $(x,y)$ in the Cartesian Coordinates and $(r,\theta)$ in the Polar Coordinates,

$x=r\cos\theta$ and $y=r\sin\theta$ where $r$ is conventionally taken as non-negative

So, $x^2+y^2=r^2\implies r=+\sqrt{x^2+y^2}$

and $\tan\theta =\frac yx\implies \theta=\arctan \frac yx,$ the quandrant of $\theta$ will be dictated by the signs of $\sin\theta$ and $\cos\theta$

For the last two cases, we also need Euler Formula or Identity.

For $(c),3\sqrt2e^{-\frac\pi4i}=3\sqrt2(\cos(-\frac\pi4)+i\sin(-\frac\pi4))$ $=3\sqrt2(\frac1{\sqrt2}-i \frac1{\sqrt2})=3-i$

So, $r=\sqrt{3^2+1^2}=\sqrt{10},\sin\theta= -\frac1{\sqrt{10}}<0,\cos\theta=\frac3{\sqrt{10}}>0$ so $\theta$ lies in the 4th Quadrant.

So, $\theta=\arctan\left(-\frac13\right)$ which lies in the 4th Quadrant

$\endgroup$
5
  • $\begingroup$ Ok so to be sure that i understand it: d) $z_{4}=-4\cdot e^{\frac{\pi}{3}i}$ this will be $-4(\cos{\frac{\pi}{3}}+\sin{\frac{\pi}{3}})=-4(\frac{1}{2}+i\frac{\sqrt{3}}{2})=-\frac{4}{2}-\frac{4\sqrt{3}}{2}i=-2-2\sqrt{3}i$ So the Cartesian Coordinates are $(-2,-2\sqrt{3})$ $r=\sqrt{(-2)^2+(-2\sqrt{3})^2}=\sqrt{16}=4$ $\boldsymbol{\sin{\theta}}=\frac{y}{r}=-\frac{\sqrt{3}}{2}$, $\boldsymbol{\cos{\theta}}=\frac{x}{r}=-\frac{1}{2}$ so $\theta$ lies in the $3_{rd}$ Quadrant, $\theta=arctan\frac{y}{x}=arctan(\sqrt{3})$ is this correct ? $\endgroup$ Commented Feb 2, 2013 at 19:57
  • $\begingroup$ @Devid, yes, the value will be $\pi+\frac\pi3$ as the principal value of $\arctan \sqrt3$ is $\frac\pi3$ $\endgroup$ Commented Feb 3, 2013 at 5:34
  • $\begingroup$ But when i do the same with $z_{1}$ i get $arctan \frac{-1}{0}$, but this can't be. $\endgroup$ Commented Feb 3, 2013 at 10:35
  • $\begingroup$ $ \phi=\begin{cases} \arctan(\frac{y}{x}) & \text{for } x>0\\ \arctan(\frac{x}{y})+\pi & \text{for} \ x<0 \\\frac{\pi}{2} & \text{for} \ x=0,y>0 \\ -\frac{\pi}{2} & \text{for} \ x=0,y<0 \end{cases} $ $\endgroup$ Commented Feb 3, 2013 at 10:54
  • 1
    $\begingroup$ en.wikipedia.org/wiki/Atan2#Definition $\endgroup$ Commented Feb 3, 2013 at 12:38
3
$\begingroup$

Hint: $$e^{i\theta}=cos\theta+i\sin\theta$$

$\endgroup$
2
$\begingroup$

Hint: $z=(x,y)$ then $r = \sqrt {x^2+y^2}$ and $\phi=\tan^{-1}\frac{y}{x}$ and $$r e^{i\phi}= r (\cos \phi + i \sin \phi).$$

$\endgroup$
4
  • $\begingroup$ Thanks but whats with $z_{1}$ i get $arctan(-\frac{1}{0})$ $\endgroup$ Commented Feb 2, 2013 at 21:43
  • 1
    $\begingroup$ $\phi=\frac{-\pi}{2}$ $\endgroup$ Commented Feb 3, 2013 at 3:20
  • $\begingroup$ @MaisamHedyelloo how did you get $\frac{-\pi}{2}$ ? $\endgroup$ Commented Feb 3, 2013 at 10:36
  • $\begingroup$ ok i got it: $ \phi=\begin{cases} \arctan(\frac{y}{x}) & \text{for } x>0\\ \arctan(\frac{x}{y})+\pi & \text{for} \ x<0 \\\frac{\pi}{2} & \text{for} \ x=0,y>0 \\ -\frac{\pi}{2} & \text{for} \ x=0,y<0 \end{cases} $ $\endgroup$ Commented Feb 3, 2013 at 10:52

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.