19
$\begingroup$

How can I prove that $$\sum_{n=1}^\infty\frac{H_{2n+1}}{n^2}=\frac{11}{4}\zeta(3)+\zeta(2)+4\log(2)-4$$

I think this post can help me, but I'm not sure.

$\endgroup$
1
  • $\begingroup$ You like Mathematica, don't you? $\endgroup$ Commented Dec 16, 2013 at 13:47

4 Answers 4

20
$\begingroup$

UPDATED: In this previous answer I proved that (if $\,\operatorname{Li}$ is the polylogarithm) : $$S(x):=\sum_{n=1}^\infty \frac{H_n}{n^2}\, x^n=\zeta(3)+\frac{\ln(1-x)^2\ln(x)}{2}+\ln(1-x)\operatorname{Li}_2(1-x)+\operatorname{Li}_3(x)-\operatorname{Li}_3(1-x)$$

Taking the limit as $x\to 1$ and $x\to -1$ we get : $$S(1)=\sum_{n=1}^\infty \frac{H_n}{n^2}=2\,\zeta(3),\quad S(-1)=\sum_{n=1}^\infty \frac{(-1)^n\;H_n}{n^2}=-\frac 58\zeta(3)$$

To obtain the limit for $S(1)$ use $\,\operatorname{Li}_n(\epsilon)\sim\epsilon\,$ as $|\epsilon|\to 0\,$ and $\,\operatorname{Li}_n(1)=\zeta(n)\,$.

For $S(-1)$ the method is rather long $(*)$ so let's come back to the integral expression from my previous answer applied to $x=-1$ (using $\displaystyle\operatorname{Li}_3(-1)=-\frac34\zeta(3)$ from $(*)$) : \begin{align} \sum_{n=1}^\infty \frac{H_n}{n^2}(-1)^n&=\int_0^{-1} \frac {\ln(1-x)^2}{2\,x}dx+\operatorname{Li}_3(-1)\\ &=\int_0^1 \frac {\ln(1+x)^2}{2\,x}dx-\frac 34\zeta(3)\\ \end{align}

Integrals like $\;\displaystyle a_k:=\int_0^1 \frac {\ln(1+x)^k}xdx\,$ were studied by Nielsen and Ramanujan who found that $\displaystyle a_1=\frac{\zeta(2)}2,\;a_2=\frac{\zeta(3)}4$ so that $\;\displaystyle S(-1)=\frac 12\frac{\zeta(3)}4-\frac{\zeta(3)}4=-\frac 58\zeta(3)$

We conclude that : $$S(1)+S(-1)=2\sum_{m=1}^\infty \frac{H_{2m}}{(2m)^2}=2\,\zeta(3)-\frac 58\zeta(3)=\frac {11}8\zeta(3)$$ and \begin{align} \sum_{n=1}^\infty \frac{H_{2n+1}}{n^2}&=\sum_{n=1}^\infty \frac{H_{2n}+\frac 1{2n+1}}{n^2}\\ &=\frac {11}4\zeta(3)+\sum_{n=1}^\infty \frac 1{n^2(2n+1)}\\ &=\frac {11}4\zeta(3)+\sum_{n=1}^\infty \frac 1{n^2}-\frac 4{2n}+\frac 4{2n+1}\\ &=\frac {11}4\zeta(3)+\sum_{n=1}^\infty \frac 1{n^2}+4\sum_{n=2}^\infty\frac {(-1)^{n-1}}{n}\\ &=\frac {11}4\zeta(3)+\zeta(2)+4(\ln(1+1)-1)\\ \end{align}


Concerning the series $\displaystyle \sum_{n=1}^\infty\frac{H_{2n+k}}{n^2}\;$ we simply add individual terms (as $+\frac 1{2n+1}$ previousy) and the same method still works : expand the remaining terms in partial fractions and evaluate the series.

For $k=5$ (using computer algebra of course) I got the previously evaluated $\; \displaystyle\frac {11}4\zeta(3)+$

$$\sum_{n=1}^\infty\frac 1{n^2}\left(\frac 1{2n+1}+\frac 1{2n+2}+\frac 1{2n+3}+\frac 1{2n+4}+\frac 1{2n+5}\right)=\\\sum_{n=1}^\infty\frac{137}{60n^2}-\frac{5269}{1800\,n} + \frac 1{2(n + 1)} + \frac 1{8(n + 2)} + \frac 4{2n + 1} + \frac 4{9( 2n + 3)} + \frac 4{25(2n + 5)}=\\ \frac{1036}{225}\ln(2) + \frac{137}{60}\zeta(2) - \frac{298373}{54000} $$

For $k=4$ the additional terms are $\displaystyle +\frac{40}9\ln(2) + \frac{25}{12}\zeta(2) - \frac{2281}{432}$ that you may compare with your result.

All results obtained for $k>0$ could be written as $\; \displaystyle R(k)=\frac{11}4\zeta(3)+p_k\,\zeta(2)+q_k\,\ln(2)+r_k\;$ for every $k>0$ with $p_k,q_k,r_k\in\mathbb{Q}\,$.


$(*)$ Alternative method to evaluate $S(-1)$ (complicated, left for the record only) :

  • $\displaystyle\operatorname{Li}_3(-1)=-\frac34\zeta(3)$ from the second formula $\;\displaystyle\operatorname{Li}_n(-1)=-\left(1-\frac 1{2^{n-1}}\right)\zeta(n)$
  • the inversion formula $\;\displaystyle\operatorname{Li}_3(z)=\operatorname{Li}_3(1/z)+2\zeta(2)\ln(z)-\frac{i\pi}2\ln(z)^2-\frac 16\ln(z)^3\;$ for $z>1$ applied to $z=2$.
  • the formula $\;\displaystyle\operatorname{Li}_3(1/2)=\frac 78\zeta(3)-\frac{\zeta(2)\ln(2)}2+\frac 16\ln(2)^3\,$ to conclude that $\;\displaystyle\operatorname{Li}_3(2)=\frac 78\zeta(3)-\frac{i\pi}2\ln(2)^2+\frac{\pi^2}4\ln(2)$.
  • the same way obtain $\;\displaystyle\operatorname{Li}_2(2)=-\frac{\pi^2}4-\frac12(\ln(2)+i\pi)^2+\frac 12\ln(2)^2\;$ from $\;\displaystyle\operatorname{Li}_2(z)=-\operatorname{Li}_2(1/z)+2\zeta(2)-i\pi\ln(z)-\frac 12\ln(z)^2\;$ and the formula for $\operatorname{Li}_2(1/2)$.
$\endgroup$
7
  • 1
    $\begingroup$ Thanks very much. Why $S(1)-S(-1)=2\sum_{m=1}^\infty \frac{H_{2m}}{(2m)^2}$? $\endgroup$ Commented Dec 16, 2013 at 16:10
  • $\begingroup$ If we let $n=2m$ then $S(1)-S(-1)=0$. $\endgroup$ Commented Dec 16, 2013 at 16:15
  • $\begingroup$ You are right @ALGEAN I had two signs wrong since the odd terms had to cancel (corrected). $\endgroup$ Commented Dec 16, 2013 at 16:44
  • 2
    $\begingroup$ +1. For a different evaluation of $S(-1)$ that relies solely on manipulation of the summation, see robjohn's answer here. $\endgroup$ Commented Dec 16, 2013 at 23:56
  • 1
    $\begingroup$ @MikeSpivey: really neat trick from robjohn indeed (and an impressive thread!). Many thanks to share Mike, $\endgroup$ Commented Dec 17, 2013 at 0:08
5
$\begingroup$

$\newcommand{\angles}[1]{\left\langle\,{#1}\,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{\mathrm{i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\Li}[1]{\,\mathrm{Li}_{#1}} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} \color{#f00}{\sum_{n = 1}^{\infty}{H_{2n + 1} \over n^{2}}} & = 4\sum_{n = 1}^{\infty}{H_{2n + 1} \over \pars{2n}^{2}} = 4\sum_{n = 1}^{\infty}{H_{n + 1} \over n^{2}}\, {1 + \pars{-1}^{n} \over 2} = 2\sum_{n = 2}^{\infty}{H_{n} \over \pars{n - 1}^{2}}\, \bracks{1 - \pars{-1}^{n}}\tag{1} \end{align}


\begin{align} \color{#f00}{\sum_{n = 1}^{\infty}{H_{2n + 1} \over n^{2}}} & = 2\sum_{n = 2}^{\infty}H_{n}\bracks{1 - \pars{-1}^{n}}\ \overbrace{\pars{-\int_{0}^{1}y^{n - 2}\,\,\ln\pars{y}\,\dd y}} ^{\ds{1 \over \pars{n - 1}^{2}}} \\[5mm] & = -2\int_{0}^{1}\ln\pars{y}\sum_{n = 2}^{\infty} \bracks{H_{n}\,y^{n} - H_{n}\,\pars{-y}^{n}}\,{\dd y \over y^{2}} \\[5mm] & = -2\int_{0}^{1}\ln\pars{y}\bracks{-2y - {\ln\pars{1 - y} \over 1 - y} + {\ln\pars{1 + y} \over 1 + y}}\,\,{\dd y \over y^{2}} \\[5mm] & = 2\int_{0}^{1}\ln\pars{y}\bracks{{\ln\pars{1 - y} \over \pars{1 - y}y^{2}} - {\ln\pars{1 + y} \over \pars{1 + y}y^{2}} + {2 \over y}}\,\dd y\tag{2} \end{align}
However, \begin{align} {\ln\pars{1 - y} \over \pars{1 - y}y^{2}} & = {\ln\pars{1 - y} \over y} + {\ln\pars{1 - y} \over y^{2}} + {\ln\pars{1 - y} \over 1 - y} \\[5mm] {\ln\pars{1 + y} \over \pars{1 + y}y^{2}} & = -\,{\ln\pars{1 + y} \over y} + {\ln\pars{1 + y} \over y^{2}} + {\ln\pars{1 + y} \over 1 + y} \end{align}
With these expressions, $\ds{\pars{2}}$ is reduced to: \begin{align} \color{#f00}{\sum_{n = 1}^{\infty}{H_{2n + 1} \over n^{2}}}\ &\ =\ \overbrace{2\int_{0}^{1}{\ln\pars{y}\ln\pars{1 - y^{2}} \over y}\,\dd y} ^{\ds{\,\mathcal{I}_{1}}}\ +\ \overbrace{% 4\int_{0}^{1}\ln\pars{y}\bracks{% {1 \over y} - {\,\mathrm{arctanh}\pars{y} \over y^{2}}}\,\dd y} ^{\ds{\,\mathcal{I}_{2}}} \\[3mm] &\ +\ \underbrace{% 2\int_{0}^{1}{\ln\pars{y}\ln\pars{1 - y} \over 1 - y}\,\dd y} _{\ds{\,\mathcal{I}_{3}}}\ -\ \underbrace{ 2\int_{0}^{1}{\ln\pars{y}\ln\pars{1 + y} \over 1 + y}\,\dd y} _{\ds{\,\mathcal{I}_{4}}} \\[5mm] & = \,\mathcal{I}_{1} + \,\mathcal{I}_{2} + \,\mathcal{I}_{3} -\,\mathcal{I}_{4} \tag{3} \end{align}
We'll evaluate the integrals $\ds{\,\mathcal{I}_{k}\,,\ k = 1,2,3,4}$:

  1. $\ds{\large\,\mathcal{I}_{1} :\ ?}$. \begin{align} \,\mathcal{I}_{1} & = 2\int_{0}^{1}{\ln\pars{y}\ln\pars{1 - y^{2}} \over y}\,\dd y\ \stackrel{y^{2}\ \mapsto\ y}{=}\ \half\int_{0}^{1}{\ln\pars{y}\ln\pars{1 - y} \over y}\,\dd y\tag{4.a} \\[5mm] & = -\,\half\int_{0}^{1}\ln\pars{y}\Li{2}'\pars{y}\,\dd y = \half\int_{0}^{1}{\Li{2}\pars{y} \over y}\,\dd y = \half\int_{0}^{1}\Li{3}'\pars{y}\,\dd y \\[5mm] & = \half\Li{3}\pars{1} = \fbox{$\ds{\ \half\,\zeta\pars{3}\ }$} = \,\mathcal{I}_{1}\tag{4.b} \end{align}
  2. $\ds{\large\,\mathcal{I}_{2} :\ ?}$. With the $\ds{\,\mathrm{arctanh}\pars{y}}$ expansion in powers of $\ds{y}$: \begin{align} \,\mathcal{I}_{2} & = 4\int_{0}^{1}\ln\pars{y}\bracks{% {1 \over y} - {\,\mathrm{arctanh}\pars{y} \over y^{2}}}\,\dd y = 4\int_{0}^{1}\ln\pars{y}\bracks{% {1 \over y} - {1 \over y^{2}}\sum_{n = 0}^{\infty}{y^{2n + 1} \over 2n + 1}}\,\dd y \\[5mm] & = -4\sum_{n = 0}^{\infty}{1 \over 2n + 3}\ \overbrace{% \int_{0}^{1}\ln\pars{y}\,y^{2n + 1}\,\,\dd y} ^{\ds{-\,{1 \over 4\pars{n + 1}^{2}}}}\ =\ \left.-\,\half\,\partiald{}{\mu} \sum_{n = 0}^{\infty}{1 \over \pars{n + \mu}\pars{n + 3/2}} \right\vert_{\ \mu\ =\ 1} \\[5mm] & = \left.\vphantom{\huge A^{A}}-\,\half\,\partiald{}{\mu} \bracks{\Psi\pars{\mu} - \Psi\pars{3/2} \over \mu - 3/2} \right\vert_{\ \mu\ =\ 1}\qquad\qquad\pars{~\Psi:\ Digamma\ Function~} \\[5mm] & = \fbox{$\ds{\ 4\ln\pars{2} - 4 + {\pi^{2} \over 6}\ }$} = \,\mathcal{I}_{2}\tag{5} \end{align}
  3. $\ds{\large\,\mathcal{I}_{3} :\ ?}$. \begin{align} \,\mathcal{I}_{3} & = 2\int_{0}^{1}{\ln\pars{y}\ln\pars{1 - y} \over 1 - y}\,\dd y\ \stackrel{y\ \mapsto\ \pars{1 - y}}{=}\,\,\, 2\int_{0}^{1}{\ln\pars{1 - y}\ln\pars{y} \over y}\,\dd y \\[5mm] & = 4\,\mathcal{I}_{1}\qquad\qquad \pars{~\mbox{see}\ \pars{\mbox{4.a}}\ \mbox{and}\ \pars{\mbox{4.b}}~} \\[5mm] & = \fbox{$\ds{\ 2\zeta\pars{3}\ }$} = \,\mathcal{I}_{3}\tag{6} \end{align}
  4. $\ds{\large\,\mathcal{I}_{4} :\ ?}$. \begin{align} \,\mathcal{I}_{4} & = 2\int_{0}^{1}{\ln\pars{y}\ln\pars{1 + y} \over 1 + y}\,\dd y = -\int_{0}^{1}{\ln^{2}\pars{1 + y} \over y}\,\dd y \\[5mm] & \stackrel{\pars{1 + y}\ \mapsto\ y}{=}\ -\int_{1}^{2}{\ln^{2}\pars{y} \over y - 1}\,\dd y\ \stackrel{y\ \mapsto\ 1/y}{=}\ -\int_{1}^{1/2}{\ln^{2}\pars{1/y} \over 1/y - 1}\,\pars{\dd y \over -y^{2}} \\[5mm] & = -\int_{1/2}^{1}{\ln^{2}\pars{y} \over y\pars{1 - y}}\,\dd y = -\int_{1/2}^{1}{\ln^{2}\pars{y} \over y}\,\dd y - \int_{1/2}^{1}{\ln^{2}\pars{y} \over 1 - y}\,\dd y \\[5mm] & = -\,{1 \over 3}\,\ln^{3}\pars{2} + \ln^{3}\pars{2} - \int_{1/2}^{1}\ln\pars{1 - y}\,2\ln\pars{y}\,{1 \over y}\,\dd y \\[5mm] & = {2 \over 3}\,\ln^{3}\pars{2} + 2\int_{1/2}^{1}\Li{2}'\pars{y}\ln\pars{y}\,\dd y \\[5mm] & = {2 \over 3}\,\ln^{3}\pars{2} + 2\ln\pars{2}\Li{2}\pars{\half} -2\int_{1/2}^{1}\overbrace{{\Li{2}\pars{y}\over y}}^{\ds{\Li{3}'\pars{y}}} \,\dd y \\[5mm] & = {2 \over 3}\,\ln^{3}\pars{2} + 2\ln\pars{2}\Li{2}\pars{\half} -2\Li{3}\pars{1} + 2\Li{3}\pars{\half} \end{align} The $\ds{\Li{s}}$ values involved in this expression are well known: $\ds{\Li{2}\pars{\half} = {\pi^{2} \over 12} - \half\,\ln^{2}\pars{2}}$, $\ds{\Li{3}\pars{1} = \zeta\pars{3}}$ and $\ds{\Li{3}\pars{\half} = {7 \over 8}\,\zeta\pars{3} + {1 \over 6}\,\ln^{3}\pars{2} - {\pi^{2} \over 12}\,\ln\pars{2}}$ such that \begin{equation} \,\mathcal{I}_{4} = \fbox{$\ds{\ -\,{1 \over 4}\,\zeta\pars{3}\ }$}\tag{7} \end{equation}
    With $\ds{\pars{3}}$$,\ds{\pars{\mbox{4.b}}}$, $\ds{\pars{5}}$, $\ds{\pars{6}}$ and $\ds{\pars{7}}$, we find the $\ds{\underline{final\ result}}$ $$ \color{#f00}{\sum_{n = 1}^{\infty}{H_{2n + 1} \over n^{2}}} = \color{#f00}{{11 \over 4}\,\zeta\pars{3} + \zeta\pars{2} + 4\ln\pars{2} - 4} \approx 3.7232\,,\qquad {\pi^{2} \over 6} = \zeta\pars{2} $$
$\endgroup$
3
$\begingroup$

Using the following nice rule: $$\sum_{n=1}^\infty a_{2n}=\sum_{n=1}^\infty a_{n}\left(\frac{1+(-1)^n}{2}\right)$$

We get \begin{align} S&=\sum_{n=1}^\infty\frac{H_{2n+1}}{n^2}=4\sum_{n=1}^\infty\frac{H_{2n+1}}{{(2n)}^2}=4\left(\frac12\sum_{n=1}^\infty\frac{H_{n+1}}{n^2}+\frac12\sum_{n=1}^\infty(-1)^n\frac{H_{n+1}}{n^2}\right)\\ &=2\sum_{n=1}^\infty\frac{H_n}{n^2}+2\sum_{n=1}^\infty(-1)^n\frac{H_n}{n^2}+2\sum_{n=1}^\infty\frac{1}{n^2(n+1)}+2\sum_{n=1}^\infty\frac{(-1)^n}{n^2(n+1)}\\ &=2\left(2\zeta(3)\right)+2\left(-\frac58\zeta(3)\right)+2\left(\zeta(2)-1\right)+2\left(2\ln2-\frac12\zeta(2)-1\right)\\ &=\frac{11}4\zeta(3)+\zeta(2)+4\ln2-4 \end{align}

Note that $\sum_{n=1}^\infty(-1)^n\frac{H_n}{n^2}$ was obtained from using the generating function where we set $x=-1$ :

$$\sum_{n=1}^\infty x^n\frac{H_n}{n^2}=\operatorname{Li}_3(x)-\operatorname{Li}_3(1-x)+\ln(1-x)\operatorname{Li}_2(1-x)+\frac12\ln x\ln^2(1-x)+\zeta(3)$$

$\endgroup$
1
$\begingroup$

Different approach:

$$\sum_{n=1}^\infty\frac{H_{2n+1}}{n^2}=\sum_{n=1}^\infty\frac{H_{2n}+\frac{1}{2n+1}}{n^2}$$ $$=\sum_{n=1}^\infty\frac{H_{2n}}{n^2}+\sum_{n=1}^\infty\frac{1}{n^2(2n+1)}$$

where $$\sum_{n=1}^\infty\frac{H_{2n}}{n^2}=4\sum_{n=1}^\infty\frac{H_{2n}}{(2n)^2}$$ $$=4\sum_{n=1}^\infty\frac{1}{2n}\left(-\int_0^1x^{2n-1}\ln(1-x)dx\right)$$

$$=-2\int_0^1\frac{\ln(1-x)}{x}\sum_{n=1}^\infty\frac{x^{2n}}{n}$$

$$=2\int_0^1\frac{\ln(1-x)\ln(1-x^2)}{x}dx$$

$$=2\int_0^1\frac{\ln^2(1-x)}{x}dx+2\int_0^1\frac{\ln(1-x)\ln(1+x)}{x}dx$$

$$=2(2\zeta(3))+2(-\frac58\zeta(3))=\frac{11}{4}\zeta(3)$$

and

$$\sum_{n=1}^\infty\frac{1}{n^2(2n+1)}=\sum_{n=1}^\infty\frac{1}{n^2}\int_0^1 x^{2n}dx$$ $$=\int_0^1\sum_{n=1}^\infty \frac{x^{2n}}{n^2}=\int_0^1\text{Li}_2(x^2)dx$$

$$=x\text{Li}_2(x^2)|_0^1+2\int_0^1\ln(1-x^2)dx$$

$$=\zeta(2)+2(x-1)\ln(1-x^2)|_0^1-4\int_0^1\frac{x}{1+x}dx$$

$$=\zeta(2)-4(1-\ln(2))$$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.