Here's the process I use:
Step one: Row reduce your matrix until it is in RREF. You've already done that in this case. Good job!
$$\left[\begin{array}{ccc|c} 1 & 3 & 0 & -5 \\ 0 & 0 & 1 & 3 \end{array}\right]$$
Step two: Determine your pivots. Pivots are the first nonzero numbers in each row before the vertical line (if there is one). There are two in this matrix.
$$\require{enclose}\left[\begin{array}{ccc|c} \enclose{circle}1 & 3 & 0 & -5 \\ 0 & 0 & \enclose{circle}1 & 3 \end{array}\right]$$
Step three: All variables corresponding to columns without pivots are free variables. Set them equal to arbitrary letters. In this case, only the second column doesn't have a pivot so the next thing I'd write down is
$$\begin{matrix}\text{Let } x_2 = t, & t\in \Bbb R\end{matrix}$$
Step four: Solve the system of equations for your pivot variables in terms of your free variables:
$$\begin{cases} x_1 + 3x_2 = -5 \\ x_3 = 3\end{cases} \iff \begin{cases} x_1 + 3t = -5 \\ x_3 = 3\end{cases} \iff \begin{cases} x_1 = -3t -5 \\ x_3 = 3\end{cases}$$
Step five: Write down the solution.
$$\begin{matrix}\pmatrix{x_1 \\ x_2 \\ x_3} = \pmatrix{-3t-5 \\ t \\ 3} = t\pmatrix{-3 \\ 1 \\ 0} + \pmatrix{-5 \\ 0 \\ 3}, & t\in \Bbb R\end{matrix}$$