1
$\begingroup$

Def.(Differentiable and Gradient)

Let $f:S\mapsto\mathbb{R}$ where $S=S^\circ\subseteq \mathbb{R},x\in S$

$$\exists m\in\mathbb{R},s.t.\lim_{h\to0}\frac{f(x+h)-f(x)-m\cdot h}{\Vert h\Vert}=0$$

$$\Leftrightarrow\nabla f(x)=m$$

Then $f$ is differentiable at $x$ with gradient $m$


Let $f:\mathbb{R}^2\mapsto\mathbb{R}$

$$f(x,y)= \begin{cases} \frac{y^3-x^8y}{x^6+y^2}& (x,y)\neq(0,0)\\\\ 0& (x,y)=(0,0) \end{cases} $$

Is $f$ differentiable at $(0,0)?$


Since for all $x,y\text{ in }\mathbb{R},f(x,0)=0\text{ and }f(0,y)=y$

Then if $\nabla f(0)\text{ exists}$ implies $\nabla f(0)=(0,1)$

That if the following limit exists and equals to $0$, $f$ must be differentiable at $(0,0)$

\begin{align} & \lim_{(x,y)\to(0,0)}\frac{f(x,y)-f(0,0)-(0,1)\cdot(x,y)}{\sqrt{x^2+y^2}}\\ & =\lim_{(x,y)\to(0,0)}\frac{f(x,y)-y}{\sqrt{x^2+y^2}} \\ & =\lim_{(x,y)\to(0,0)}\frac{\frac{y^3-x^8y}{x^6+y^2}-y}{\sqrt{x^2+y^2}} \\ & =\lim_{(x,y)\to(0,0)}-\frac{\left(yx^8+yx^6\right)\sqrt{y^2+x^2}}{\left(y^2+x^6\right)\left(y^2+x^2\right)}\\ & =\lim _{\left(x,\:y\right)\to \left(0,\:0\right)}-\frac{y}{\sqrt{y^2+x^2}}\cdot \frac{x^8+x^6}{y^2+x^6}\\ \end{align} $\text{Update:}$

$\text{Let $x=r\cos(\theta),y=r\sin(\theta)$ we have}$ \begin{align} & =\lim _{r\to \:0}-\frac{r\sin \left(θ\right)}{\sqrt{\left(r\sin \left(θ\right)\right)^2+\left(r\cos \left(θ\right)\right)^2}}\cdot \frac{\left(r\cos \left(θ\right)\right)^8+\left(r\cos \left(θ\right)\right)^6}{\left(r\sin \left(θ\right)\right)^2+\left(r\cos \left(θ\right)\right)^6}\\ & =-\sin \left(θ\right)\cdot \lim _{r\to \:0}\frac{r}{\sqrt{\left(r\sin \left(θ\right)\right)^2+\left(r\cos \left(θ\right)\right)^2}}\cdot \lim _{r\to \:0}\frac{\left(r\cos \left(θ\right)\right)^8+\left(r\cos \left(θ\right)\right)^6}{\left(r\sin \left(θ\right)\right)^2+\left(r\cos \left(θ\right)\right)^6}\\ & \neq-\sin \left(θ\right)\cdot\sqrt{\lim _{r\to \:0}\frac{r^2}{\left(r\sin \left(θ\right)\right)^2+\left(r\cos \left(θ\right)\right)^2}}\cdot\lim _{r\to \:0}\frac{r^4\cos ^6\left(θ\right)\left(r^2\cos ^2\left(θ\right)+1\right)}{\sin ^2\left(θ\right)+r^4\cos ^6\left(θ\right)}\\ & =-\sin(\theta)\cdot \text{d.n.e}\cdot0=\text{d.n.e} \end{align}

Therefore $f$ isn't differentiable at $(0,0).$$\tag*{$\square$}$

Is this calculation correct $?$

Any help would be appreciated.

$\endgroup$
4
  • 1
    $\begingroup$ As you can see from my answer limit doesn’t exist. In your update the derivation for the limit equal to zero is not correct. $\endgroup$ Commented Oct 24, 2019 at 23:48
  • 1
    $\begingroup$ Notably $$\sqrt{\frac{r^2}{\left(r\sin \left(θ\right)\right)^2+\left(r\cos \left(θ\right)\right)^2}}=1$$ $\endgroup$ Commented Oct 24, 2019 at 23:50
  • $\begingroup$ And what about here for $\sin \theta=0$ $$\lim _{r\to \:0}\frac{r^4\cos ^6\left(θ\right)\left(r^2\cos ^2\left(θ\right)+1\right)}{\sin ^2\left(θ\right)+r^4\cos ^6\left(θ\right)}$$ $\endgroup$ Commented Oct 24, 2019 at 23:53
  • $\begingroup$ @user yes, i just notice that, the $1$ is the right limit, and i shouldn't use equal sign there, which the left limit is $-1$, so the first limit does not exists, thanks! $\endgroup$ Commented Oct 25, 2019 at 2:06

1 Answer 1

1
$\begingroup$

We have that limit doesn't exist

$$-\frac{\left(yx^8+yx^6\right)\sqrt{y^2+x^2}}{\left(y^2+x^6\right)\left(y^2+x^2\right)} =-\frac{y}{\sqrt{y^2+x^2}}\cdot \frac{x^8+x^6}{y^2+x^6} $$

indeed

$$-\frac{y}{\sqrt{y^2+x^2}}=-\sin \theta$$

and as $y=t$ and $x=t\to 0$

$$\frac{x^8+x^6}{y^2+x^6}=\frac{t^8+t^6}{t^2+t^6}\to 0$$

but as $y=t^3$ and $x=t\to 0$

$$\frac{x^8+x^6}{y^2+x^6}=\frac{t^8+t^6}{2t^6}\to \frac12$$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.