I recently discovered the following infinite series
$\displaystyle \sum_{k=0}^{\infty} \binom{t}{k} (-1)^k \frac{(2k-3)!!}{(2k-2)!!} = \frac{2t \Gamma\left(t+\frac{1}{2}\right)}{\sqrt{\pi}{\Gamma(t+1)}} $
where $\displaystyle \binom{t}{k} = \frac{(t)_{k}}{k!} $ is the generalized binomial coefficient ($t$ is a real number). Any hint or guidance about the proof will be very appreciated.
It seems that the right hand side is related to the reciprocal of the complete beta function:
Since $\displaystyle B\left(t,\frac{1}{2}\right) = \frac{\Gamma\left(\frac{1}{2}\right)\Gamma(t)}{\Gamma\left(t+\frac{1}{2}\right)} = \frac{\Gamma\left(\frac{1}{2}\right)\Gamma(t+1)}{t\Gamma\left(t+\frac{1}{2}\right)}$
$\displaystyle \Longrightarrow \frac{1}{B\left(t,\frac{1}{2}\right)} = \frac{t\Gamma\left(t+\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2}\right)\Gamma(t+1)}= \frac{t\Gamma\left(t+\frac{1}{2}\right)}{\sqrt{\pi}\Gamma(t+1)}$
So this sum is kind of an expansion series for the reciprocal of the complete beta function:
$\displaystyle \frac{2}{B\left(t,\frac{1}{2}\right)} = \sum_{k=0}^{\infty} \binom{t}{k} (-1)^k \frac{(2k-3)!!}{(2k-2)!!} $