1
$\begingroup$

I recently discovered the following infinite series

$\displaystyle \sum_{k=0}^{\infty} \binom{t}{k} (-1)^k \frac{(2k-3)!!}{(2k-2)!!} = \frac{2t \Gamma\left(t+\frac{1}{2}\right)}{\sqrt{\pi}{\Gamma(t+1)}} $

where $\displaystyle \binom{t}{k} = \frac{(t)_{k}}{k!} $ is the generalized binomial coefficient ($t$ is a real number). Any hint or guidance about the proof will be very appreciated.

It seems that the right hand side is related to the reciprocal of the complete beta function:

Since $\displaystyle B\left(t,\frac{1}{2}\right) = \frac{\Gamma\left(\frac{1}{2}\right)\Gamma(t)}{\Gamma\left(t+\frac{1}{2}\right)} = \frac{\Gamma\left(\frac{1}{2}\right)\Gamma(t+1)}{t\Gamma\left(t+\frac{1}{2}\right)}$

$\displaystyle \Longrightarrow \frac{1}{B\left(t,\frac{1}{2}\right)} = \frac{t\Gamma\left(t+\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2}\right)\Gamma(t+1)}= \frac{t\Gamma\left(t+\frac{1}{2}\right)}{\sqrt{\pi}\Gamma(t+1)}$

So this sum is kind of an expansion series for the reciprocal of the complete beta function:

$\displaystyle \frac{2}{B\left(t,\frac{1}{2}\right)} = \sum_{k=0}^{\infty} \binom{t}{k} (-1)^k \frac{(2k-3)!!}{(2k-2)!!} $

$\endgroup$
2
  • $\begingroup$ What is the question? $\endgroup$ Commented Aug 1, 2021 at 18:29
  • $\begingroup$ If someone has a hint about the proof $\endgroup$ Commented Aug 1, 2021 at 18:31

1 Answer 1

2
$\begingroup$

Your series can be re-written as a limiting case of the Gauss hypergeometric function: $$ 2\mathop {\lim }\limits_{c \to 0} \frac{1}{{\Gamma (c)}}{}_2F_1 \!\left( { - t, - \tfrac{1}{2};c;1} \right). $$ You need to express the terms in terms of gamma functions to see this. Then, using http://dlmf.nist.gov/15.4.E20, we have $$ 2\mathop {\lim }\limits_{c \to 0} \frac{1}{{\Gamma (c)}}{}_2F_1 \!\left( { - t, - \tfrac{1}{2};c;1} \right) = 2\mathop {\lim }\limits_{c \to 0} \frac{{\Gamma \!\left( {c + t + \frac{1}{2}} \right)}}{{\Gamma (c + t)\Gamma \!\left( {c + \frac{1}{2}} \right)}} = 2\frac{{\Gamma \!\left( {t + \frac{1}{2}} \right)}}{{\Gamma (t)\Gamma \!\left( {\frac{1}{2}} \right)}} = \frac{{2t\Gamma\! \left( {t + \frac{1}{2}} \right)}}{{\sqrt \pi }\Gamma (t + 1)}. $$

$\endgroup$
0

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.