2
$\begingroup$

I am reading the paper Fuzzy Topological Spaces and Fuzzy Compactness by Robert Lowen. I have proved the theorem 2.2: $(X,\delta)$ is topologically generated if and only if for each continuous function $f \in \mathscr{G}(I,I_r)$ and for each $\nu \in \delta$, $f \circ \nu \in \delta$.

Assume $(X,\delta)$ is topologically generated. Since $\nu \in \mathscr{G}(\mathcal{J},I_e) = \delta$ and $f \in \mathscr{G}(I_r,I_r)$, then $f \circ \nu \in \mathscr{G}(\mathcal{J},I_r) = \delta$.

Conversely, assume $\mu \in \bar{\delta}$. Recall that $\bar{\delta} = \omega \circ \iota (\delta)$. This shows $\mu \in \mathscr{G}\big(\iota(\delta),I_r\big)$. Since a basis for $\iota(\delta)$ is provided by the finite intersections \begin{align*} \bigcap_{i=1}^n \nu_i^{-1} \big((r_i,1]\big)\;\;\; \text{ for some }\nu_i \in \delta,\,r_i \in I; \end{align*} this is equivalent to saying for any $r \in I$, any $x \in \mu^{-1}\big((r,1]\big)$, $(r,1]$ is open in $I_r$ and $\mu^{-1}(r,1]$ is open in $\iota(\delta)$ since $\mu \in \mathscr{G}\big(\iota(\delta),I_r\big)$. Hence, for every $x \in \mu^{-1}(r,1]$, there exists finite open set $(r_i,1]$ such that \begin{align*} x \in \bigcap_{i \in I_{r,x}} \nu_i^{-1} \big((r_i,1]\big) \subseteq \mu_i^{-1} \big((r_i,1]\big). \end{align*} Now, we want to show $\mu$ is closed under some finite intersection and arbitrary union of basis of $\delta$. Fix $x$ and let $\mu(x) = k_x \in (r,1]$, then $\forall x < k_x,\, \exists$ a finite index set $I_{r}$ such that \begin{align*} x \in \bigcap_{i \in I_{r}} \nu_i^{-1} \big((r_i,1]\big) \subseteq \mu_i^{-1} \big((r_i,1]\big). \end{align*} Then, $\forall r < k_x$ and $\forall i \in I_r$, let \begin{align*} \mu_{i,r}(y) =\big( (r \chi_{\scriptscriptstyle{(i_i,1]}}) \circ \nu_i\big) (y) = \begin{cases} r,\, \text{if } \nu_i(y) > r_i,\\ 0,\,\text{if } \nu_i(y) \leq r_i. \end{cases} \end{align*} where $\mu_{i,r} \in \delta$ and $r \chi_{\scriptscriptstyle{(i_i,1]}} \in \mathscr{G}(I_r,I_r)$. This indeed follows from our assumption $f \circ \nu $ for all $ f \in \mathscr{G}(I_r,I_r) \text{ and } \nu \in \delta$. Then, let $\nu_{r}^x = \displaystyle\inf_{i \in I_{r}} \mu_{i,r} \in \delta$. Since $I_r$ is finite and hence $\nu_r^x = \displaystyle\min_{i \in I_r} \mu_{i,r}$, then we have \begin{align*} \nu_{r}^x(y) = \begin{cases} r,\,\text{if } \;\forall i \in I_{r}\text{ we have }\nu_i(y)>r_i,\\ 0,\,\text{if }\;\exists j \in I_{r}\text{ such that }\nu_i(y) \leq r_j. \end{cases} \end{align*} Hence if $\nu_{r}^x(y) = r $, then $\nu_i(y) > r_i$ for all $i \in I_r$. Since \begin{align*} y \in \bigcap_{i=1}^n \nu_i^{-1}(r_i,1] \subseteq \mu^{-1}(r,1], \end{align*}therefore for every $y \in [0,1]$, $\mu(y) > r$ which shows $\mu \geq \nu_r^x$ for every $x \in \mu^{-1}(r,1]$ and $r < k_x$. Now, it is easily to seen that \begin{align*} \mu = \sup_{x \in X} \sup_{r < k_x} \nu_{r}^x(y) \in \delta. \end{align*} Hence, if every $\mu \in \bar{\delta}$, then $\mu \in \delta$. This shows $\bar{\delta} = \delta$ which implies $(X,\delta)$ is topologically generated.

I began by assuming that $\mu \in \bar{\delta}$ where $\bar{\delta}$ is a topologically generated fuzzy topology. Then I constructed a basis from $\delta$ and showed that $\mu$ can be expressed as a finite intersection and arbitrary union of the open sets in this basis. My final goal is to show if $\mu \in \bar{\delta}$, then $\mu \in \delta$, which would shows $(X,\delta)$ is topologically generated. Could someone help me verify if my proof is correcct?

$\endgroup$

0

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.