12
$\begingroup$

I'm trying to find the ring of integers of $\mathbb{Q}[\sqrt{17}]$, and it comes down to determining the set $\{(a,b)\in\mathbb{Q}^2\mid 2a\in \mathbb{Z}, a^2-17b^2\in\mathbb{Z}\}$. How can I determine this set?

$\endgroup$

2 Answers 2

20
$\begingroup$

Theorem: If $d\equiv 1\pmod{4}$, then $\mathcal{O}_{\mathbf{Q}[\sqrt{d}]}=\mathbf{Z}\left[\frac{-1+\sqrt{d}}{2}\right]$. Otherwise, $\mathcal{O}_{\mathbf{Q}[\sqrt{d}]}=\mathbf{Z}[\sqrt{d}]$.

Proof: Let $\alpha=r+s\sqrt{d}\in\mathbf{Q}(\sqrt{d})$. Then, $\alpha\in\mathcal{O}_{\mathbf{Q}[\sqrt{d}]}$ iff $2r, r^2-s^2d\in\mathbf{Z}$. Clearly $2r\in\mathbf{Z}$, so $4s^2d\in\mathbf{Z}$, and since $d$ is squarefree, $2s\in\mathbf{Z}$. Substituting $m=2r, n=2s$, we get $r^2-ds^2\in\mathbf{Z}\implies 4|(m^2-dn^2)$. Now, if $d\equiv 2,3\pmod{4}$, then $$m^2-dn^2\equiv m^2+2n^2, m^2+n^2\pmod{4}.$$ Note that for these to be divisible by $4$, we must have that $m,n$ are both even, which happens iff $r,s\in\mathbf{Z}$, so this takes care of the case where $d\not\equiv 1\pmod{4}$.

Now if $d\equiv 1\pmod{4}$, then $m^2-dn^2\equiv m^2-n^2\pmod{4}$, but since $4|(m^2-n^2)$ iff $m\equiv n\pmod{2}$, we get $$\mathcal{O}_{\mathbf{Q}(\sqrt{d})}=\left\{\frac{m+n\sqrt{d}}{2}:m\equiv n\pmod{2}\right\}.$$ Now, note that $$\frac{1}{2}(m+n\sqrt{d})=\frac{m+n}{2}+n\left(\frac{-1+\sqrt{d}}{2}\right).$$ Since $m$ and $n$ have the same parity, $\frac{m+n}{2}$ is an integer, so $\mathcal{O}_{\mathbf{Q}(\sqrt{d})}\subset \mathbf{Z}+\frac{-1+\sqrt{d}}{2}\mathbf{Z}$, and to see the reverse just note that since $d$ is of the shape $4k+1$, $\frac{1}{2}(-1+\sqrt{d})\in\mathcal{O}_{\mathbf{Q}(\sqrt{d})}$, so we're done. $\Box$

$17\equiv 1\pmod{4}$, so $\mathcal{O}_{\mathbf{Q}[\sqrt{17}]}=\mathbf{Z}\left[\frac{-1+\sqrt{17}}{2}\right]$.

$\endgroup$
3
  • 1
    $\begingroup$ How do we say that $2s \in \mathbb{Z}$ ? $\endgroup$ Commented Apr 18, 2017 at 12:15
  • $\begingroup$ Is $d$ allowed to be negative? $\endgroup$ Commented Jul 12, 2017 at 23:26
  • $\begingroup$ @AkivaWeinberger: Yes, I believe it's quite general. $\endgroup$ Commented Jul 12, 2017 at 23:47
10
$\begingroup$

Let $D$ be a squarefree number. The element $a+b\sqrt{D}\in\Bbb Q(\sqrt{D})=K$ has minimal polynomial

$$x^2-2ax+(a^2-Db^2).$$

Thus $a+b\sqrt{d}\in{\cal O}_K\Leftrightarrow a\in\frac{1}{2}\Bbb Z,a^2-Db^2\in\Bbb Z$. If $b$ is not an integer, then can $a$ an integer? And, furthermore, what is the only possible denominator for $b$? Now try to show that $a,b$ can be the appropriate types of fractions if and only if $D$ is a quadratic residue mod $4$.

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.