$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\dsc}[1]{\displaystyle{\color{red}{#1}}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\Li}[1]{\,{\rm Li}_{#1}} \newcommand{\norm}[1]{\left\vert\left\vert\, #1\,\right\vert\right\vert} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$ Note that \begin{align}&\color{#66f}{\large% \int_{0}^{\infty}{\ln\pars{1 + x^{2}} \over x^{2}}\,\dd x} =\half\int_{0}^{\infty}{\ln\pars{1 + x} \over x^{3/2}}\,\dd x =\half\int_{1}^{\infty}\pars{x - 1}^{-3/2}\,\,\ln\pars{x}\,\dd x \qquad\pars{1} \end{align} We evaluate the integral, in the RHS, by performing the contour integral $$ \oint_{\gamma}\pars{z - 1}^{-3/2}\,\,\ln\pars{z}\,\dd z $$ along the path $\ds{\gamma}$ depicted below:

which shows two branch cuts. Namely: \begin{align} \begin{array}{rclrcll} \pars{z - 1}^{-3/2} & = &\verts{z - 1}^{-3/2} \exp\pars{-\,{3 \over 2}\,\,{\rm Arg}\pars{z - 1}\ic}\,, & z & \not= & 1 \,, & \phantom{-}0 < \,{\rm Arg}\pars{z - 1} < 2\pi \\[5mm] \ln\pars{z}&=&\ln\pars{\verts{z}} + \ic\,{\rm Arg}\pars{z}\,,& z &\not = & 0\,, & -\pi < \,{\rm Arg}\pars{z} < \pi \end{array} \end{align} Obviously, the integral along $\ds{\gamma}$ vanishes out because there are not any poles inside the contour. For simplicity, we omit the contribution of the arcs $\ds{C_{R}}$, of radius $\ds{R}$, and the 'small' semicircles, of radius $\ds{\epsilon}$, around $\ds{z=0}$ and $\ds{z=1}$: They don't yield any contribution in the limits $\ds{R\ \to\ \infty\,,\ \epsilon\ \to\ 0^{+}}$. Then, \begin{align} 0&=\oint_{\gamma}\pars{z - 1}^{-3/2}\,\,\ln\pars{z}\,\dd z =\overbrace{\int_{1}^{\infty}\pars{x - 1}^{-3/2}\ln\pars{x}\,\dd x} ^{\ds{\mbox{along}\ \dsc{C_{++}}}} \\[5mm]&+\overbrace{% \int_{-\infty}^{0}\pars{1 - x}^{-3/2}\expo{-3\pi\ic/2} \bracks{\ln\pars{x} + \ic\pi}\,\dd x} ^{\ds{\mbox{along}\ \dsc{C_{-+}}}}\ +\ \overbrace{% \int^{-\infty}_{0}\pars{1 - x}^{-3/2}\expo{-3\pi\ic/2} \bracks{\ln\pars{x} - \ic\pi}\,\dd x} ^{\ds{\mbox{along}\ \dsc{C_{--}}}} \\[5mm]&+\overbrace{\int^{1}_{\infty}\pars{x - 1}^{-3/2} \expo{-3\pi\ic}\ln\pars{x}\,\dd x} ^{\ds{\mbox{along}\ \dsc{C_{+-}}}}\ =\ 2\int_{1}^{\infty}\pars{x - 1}^{-3/2}\ln\pars{x}\,\dd x \\[5mm]&\phantom{=}+2\pi\ic\expo{-3\pi\ic/2}\int_{-\infty}^{0} \pars{1 - x}^{-3/2}\,\dd x =2\int_{1}^{\infty}\pars{x - 1}^{-3/2}\ \ln\pars{x}\,\dd x -\left.{4\pi \over \root{1 - x}}\,\right\vert_{\, x\ \to\ -\infty}^{\, x\ =\ 0} \\[5mm]&=2\int_{1}^{\infty}\pars{x - 1}^{-3/2}\ \ln\pars{x}\,\dd x - 4\pi \quad\imp\quad \boxed{\ds{\quad\int_{1}^{\infty}\pars{x - 1}^{-3/2}\ \ln\pars{x}\,\dd x =2\pi\quad}} \end{align}
Replacing this result in expression $\pars{1}$, we'll find:
\begin{align}&\color{#66f}{\large% \int_{0}^{\infty}{\ln\pars{1 + x^{2}} \over x^{2}}\,\dd x} =\color{#66f}{\Large\pi} \end{align}