0
$\begingroup$

We have $C$ sysmetric block matrices $W^c \in \mathbb{R}^{N_c\times N_c}$, where $c \in \lbrace 1,2,\cdots,C\rbrace$. We have the entire matrix consisting of $W^c$. We denote $W\in \mathbb{R}^{N\times N}$ as follows: $$ W=\begin{bmatrix} W^1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & W^C \end{bmatrix} $$ Could anyone prove the following formulation: $$ \sum_{c=1}^{C}\sum_{i,j=1}^{N_c}\|\mathbf{x}_i^c-\mathbf{x}_j^c\|^2W_{ij}^c=\sum_{i,j=1}^{N}\|\mathbf{x}_i-\mathbf{x}_j\|^2W_{ij} $$ where $\mathbf{x}_i,\mathbf{x}_j\in \mathbb{R}^n$, $\mathcal{X}=\{\mathbf{x}_1^1,\mathbf{x}_2^1,\cdots,\mathbf{x}_{N_1}^1,\cdots,\mathbf{x}_1^C,\mathbf{x}_2^C,\cdots,\mathbf{x}_{N_C}^C\}$,$\mathbf{x}_i\in \mathcal{X},i\in \{1,2,\cdots,N\}$; where $N_1+N_2+\cdots+N_C=N$.

$\endgroup$

1 Answer 1

0
$\begingroup$

It comes down to book-keeping. Here's one way to see it: $$ \sum_{i,j=1}^{N}\|\mathbf{x}_i-\mathbf{x}_j\|^2W_{ij} - \sum_{c=1}^{C}\sum_{i,j=1}^{N_c}\|\mathbf{x}_i^c-\mathbf{x}_j^c\|^2W_{ij}^c =\\ \sum_{1 \leq c\neq d \leq C} \sum_{i=1}^{N_c}\sum_{j=1}^{N_d} \|\mathbf{x}_i^c-\mathbf{x}_j^d\|^2W[N_1 + \cdots + N_c + i,N_1 + \cdots + N_d + j] $$ However, $W[N_1 + \cdots + N_c + i,N_1 + \cdots + N_d + j] = 0$

$\endgroup$
2
  • $\begingroup$ Do you mean the following: $\mathbf{W}[N_1+\cdots+N_c+i,N_1+\cdots+N_d+i]\in \mathbf{W}$ and $\mathbf{W}[N_1+\cdots+N_c+i,N_1+\cdots+N_d+i]\ni \mathbf{W}^c$ $\endgroup$ Commented Feb 3, 2015 at 10:50
  • $\begingroup$ I mean that the entry of $W$ in the entry $(N_1 + \cdots + N_c + i,N_1 + \cdots + N_d + j)$ is $0$ because this entry is not in any of the matrices that form the block diagonal. $\endgroup$ Commented Feb 3, 2015 at 11:51

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.