Let $f:[0,1]\to\mathbb{R}$ be a continuous function such that $\int\limits_0^1f(x)dx=0$. Prove that $$\int\limits_0^1f^2(x)dx\geq12\left( \int\limits_0^1xf(x)dx\right)^2.$$
My approach as follow
Let $F(x)=\int\limits_0^xf(t)dt$. Integrate by part we have $$\int\limits_0^1F(x)dx=-\int\limits_0^1xf(x)dx.$$ By Cauchy-Schwarz inequality $$\begin{aligned} \left( \int\limits_0^{1/2}xf(x)dx\right)^2&\leq\left( \int\limits_0^{1/2}x^2dx\right)\left( \int\limits_0^{1/2}f^2(x)dx\right)=\frac{1}{24}\int\limits_0^{1/2}f^2(x)dx\\ \left( \int\limits_{1/2}^1(x-\frac{1}{2})f(x)dx\right)^2&\leq\left( \int\limits_{1/2}^1(x-\frac{1}{2})^2dx\right)\left( \int\limits_{1/2}^1f^2(x)dx\right)=\frac{1}{24}\int\limits_{1/2}^1f^2(x)dx \end{aligned}$$ Hence $$\left( \int\limits_0^{1/2}xf(x)dx\right)^2+\left( \int\limits_{1/2}^1(x-\frac{1}{2})f(x)dx\right)^2\leq \frac{1}{24}\int\limits_{0}^1f^2(x)dx.$$
But I can't deduce the result. Please help me. Thank in advanced.