9
$\begingroup$

Let $f:[0,1]\to\mathbb{R}$ be a continuous function such that $\int\limits_0^1f(x)dx=0$. Prove that $$\int\limits_0^1f^2(x)dx\geq12\left( \int\limits_0^1xf(x)dx\right)^2.$$

My approach as follow

Let $F(x)=\int\limits_0^xf(t)dt$. Integrate by part we have $$\int\limits_0^1F(x)dx=-\int\limits_0^1xf(x)dx.$$ By Cauchy-Schwarz inequality $$\begin{aligned} \left( \int\limits_0^{1/2}xf(x)dx\right)^2&\leq\left( \int\limits_0^{1/2}x^2dx\right)\left( \int\limits_0^{1/2}f^2(x)dx\right)=\frac{1}{24}\int\limits_0^{1/2}f^2(x)dx\\ \left( \int\limits_{1/2}^1(x-\frac{1}{2})f(x)dx\right)^2&\leq\left( \int\limits_{1/2}^1(x-\frac{1}{2})^2dx\right)\left( \int\limits_{1/2}^1f^2(x)dx\right)=\frac{1}{24}\int\limits_{1/2}^1f^2(x)dx \end{aligned}$$ Hence $$\left( \int\limits_0^{1/2}xf(x)dx\right)^2+\left( \int\limits_{1/2}^1(x-\frac{1}{2})f(x)dx\right)^2\leq \frac{1}{24}\int\limits_{0}^1f^2(x)dx.$$

But I can't deduce the result. Please help me. Thank in advanced.

$\endgroup$

2 Answers 2

16
$\begingroup$

Since $f$ has mean zero, $$ \int_{0}^{1} x\,f(x)\,dx = \int_{0}^{1}\left(x-\frac{1}{2}\right)\,f(x)\,dx,\tag{1}$$ and by the Cauchy-Schwarz/Buniakowski inequality we have: $$ \left(\int_{0}^{1}\left(x-\frac{1}{2}\right)\,f(x)\,dx\right)^2 \leq \int_{0}^{1}f(x)^2\,dx \int_{0}^{1}\left(x-\frac{1}{2}\right)^2\,dx \tag{2}$$ so we just have to check that: $$ \int_{0}^{1}\left(x-\frac{1}{2}\right)^2\,dx = \frac{1}{12},\tag{3}$$ that is straightforward.

$\endgroup$
4
  • $\begingroup$ Where does the first line come from? $\endgroup$ Commented Apr 14, 2015 at 15:47
  • 4
    $\begingroup$ @nbubis: if $f$ has mean zero, $\int_{0}^{1}\frac{1}{2}\,f(x)\,dx = 0$. $\endgroup$ Commented Apr 14, 2015 at 15:49
  • 3
    $\begingroup$ Must.. get.. more.. sleep :) $\endgroup$ Commented Apr 14, 2015 at 15:51
  • 5
    $\begingroup$ One could also notice that the $1/2$ is the optimal choice of constant. $\endgroup$ Commented Apr 14, 2015 at 15:54
1
$\begingroup$

A "mechanical" way to deal with this question is to follow the proof of Cauchy Inequality and write

\begin{aligned} 0&\leq \int_0^1 (x+\lambda f+\mu)^2\\ &=E(f^2)\lambda^2+2\lambda E(xf) +\frac{1}{3}+\mu+\mu^2 \end{aligned}

Here $E(g)=\int_0^1 g,\;E^2(g)=(E(g))^2$. Thus

$$ \Delta_1=4 E^2(xf)-4 E^2(f)\left(\frac{1}{3}+\mu+\mu^2\right)\leq 0$$

Now treat $\Delta_1\leq 0$ as an inequality of $\mu$,

$$\Delta_2=E(f^2)\left (-\frac{1}{3}E(f^2)+4 E^2(xf)\right)\leq 0$$

If $E(f^2)=0$ then $f=0$ almost everywhere, so done. Otherwise, we have

$$ E^2(xf)\leq \frac{1}{12} E(f^2)$$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.