More generally, and with no originality, let $f$ be a function with $f'(x) \ge 0$ and $f(x) > 0$ Then $f(n) \le \int_n^{n+1} f(x) dx \le f(n+1) $. (If $f'(x) \le 0$ and $f(x) > 0$, then the inequalities are reversed so $f(n) \ge \int_n^{n+1} f(x) dx \ge f(n+1) $.)
Summing for $n = 1$ to $N-1$, $\sum_{n=1}^{N-1}f(n) \le \int_1^{N} f(x) dx \le \sum_{n=1}^{N-1} f(n+1) $ or $ f(0) \le \sum_{n=1}^{N}f(n)-\int_1^{N} f(x) dx \le f(N) $. Therefore, if $\frac{f(N)}{\int_1^{N} f(x) dx} \to 0 $, since $\frac{\int_0^{1} f(x) dx}{\int_1^{N} f(x) dx} \to 0 $, $\frac1{\int_0^{N} f(x) dx}\sum_{n=1}^{N}f(n) \to 1 $.
Letting $f(x) =x^p $ with $p \ge 1$, $\frac{p+1}{N^{p+1}}\sum_{n=1}^{N}n^p \to 1 $ or $\frac1{N}\sum_{n=1}^{N}\left(\frac{n}{N}\right)^p \to \frac1{p+1} $.