21
$\begingroup$

I want to prove, the Laurent expansion of gamma function. \begin{align} \Gamma(z) = \frac1z-\gamma+\frac12\left(\gamma^2+\frac {\pi^2}6\right)z-\frac16\left(\gamma^3+\frac {\gamma\pi^2}2+2 \zeta(3)\right)z^2+O(z^3). \end{align}

First, my guess of obtaing above expansion, is starting from the definitions of gamma function \begin{align} \Gamma(z) &= \int_0^{\infty} dt e^{-t} t^{z-1} \\ & = \int_1^\infty dt e^{-t}t^{z-1} + \int_0^1dt e^{-t} t^{z-1} \\ & = \int_1^\infty dte^{-t}t^{z-1} + \int_0^1 dt t^{z-1} \sum_{n=0}^{\infty}\frac{(-1)^n}{n!}t^n \\ & = \int_1^\infty dt e^{-t}t^{z-1} + \sum_{n=0}^{\infty} \frac{(-1)^n}{n!}\frac{1}{z+n} \end{align} This only gives the gamma function as a function of $\frac{1}{z}$...

Or should I start with \begin{align} \Gamma(z) = \lim_{n \rightarrow \infty} \frac{n! n^z}{z(z+1) \cdots(z+n)} \end{align}

$\endgroup$
1
  • $\begingroup$ Recurrences for the coefficients are in vixra.org/abs/2507.0094 . $\endgroup$ Commented Jul 14 at 10:23

3 Answers 3

28
$\begingroup$

Let $\Gamma(z)$ be represented by the integral

$$\Gamma(z)=\int_0^\infty x^{z-1}e^{-x}\,dx\tag1$$

for $\text{Re}(z)>0$. Integrate by parts the integral in $(1)$ with $u=e^{-x}$ and $v=\frac{x^z}{z}$ reveals

$$\Gamma(z)=\frac1z\int_0^\infty x^ze^{-x}\,dx\tag2$$

Next, we expand $x^z$ in a power series of $z$ to obtain

$$\begin{align} \Gamma(z)&=\frac1z\sum_{n=0}^\infty \frac{z^n}{n!}\int_0^\infty e^{-x}\log^n(x)\,dx\\\\ &=\frac1z+\underbrace{\int_0^\infty \log(x)e^{-x}\,dx}_{=-\gamma}+\frac12 z\underbrace{\int_0^\infty \log^2(x)e^{-x}\,dx}_{\gamma^2+\frac{\pi^2}6}+\frac16z^2 \underbrace{\int_0^\infty \log^3(x)e^{-x}\,dx}_{-\gamma^3-\gamma\pi^2/2-2\zeta(3)}+O(z^3) \end{align}$$

as was to be shown.


NOTE:

The coefficients $\int_0^\infty \log^n(x)e^{-x}\,dx$ for $n=2,3$ can be found by using the relationship, $\Gamma'(x)=\Gamma(x)\psi(x)$, between the logarithmic derivative of the Gamma function and the Digamma function, along with values of $\psi'(1)=\zeta(2)$ and $\psi''(1)=-2\zeta(3)$.

$\endgroup$
0
4
$\begingroup$

An idea for you to develop:

The Weierstrass Formula tells us that

$$\frac1{\Gamma(z)}=ze^{\gamma z}\prod_{n=1}^\infty\left(1+\frac zn\right)e^{-z/n}$$

Now take logarithms on both sides to get a more or less well known relation:

$$-\log\Gamma(z)=\log z+\gamma z+\sum_{n=1}^\infty\left[\log\left(1+\frac zn\right)-\frac zn\right]$$

Now differentiate the above to get the logarithmic derivative of the Gamma function:

$$\frac{\Gamma'(z)}{\Gamma(z)}=-\frac1z-\gamma-\sum_{n=1}^\infty\frac1n\left[\frac n{z+n}-1\right]=-\frac1z-\gamma+\sum_{n=1}^\infty\frac z{n(z+n)}$$

and etc. You can try to integrate the $\;-\dfrac1z\;$ term into the series, too.

$\endgroup$
3
$\begingroup$

A straightforward way is to use the relation $$ \Gamma(z) = \frac{\Gamma(1+z)}{z} $$ and the well-known expansion around $z=1$: $$ \Gamma(1+z) = \exp\left(-\gamma z + \sum_{n=2}^\infty \frac{(-1)^n}{n} \zeta(n) z^n \right). $$ The latter is just a consequence of the definition of the polygamma function $$ \psi^{(n)}(z) := \frac{d^{n+1}}{dz^{n+1}} \ln\Gamma(z), \qquad n = 0, 1, \dots $$ and its special value at $z=1$: $$ \psi^{(n)}(1) = \begin{cases} - \gamma, & n = 0, \\ (-1)^{n+1} n! \zeta(n+1), & n = 1, 2, \dots \end{cases} $$ Namely, $$ \frac{d^n}{dz^n} \ln\Gamma(z)\Biggr|_{z=1} = \begin{cases} 0, & n = 0, \\ -\gamma, & n = 1, \\ (-1)^n (n-1)! \zeta(n), & n = 2, 3, \dots \end{cases} $$ and thus one can Taylor-expand $$ \ln\Gamma(1+z) = -\gamma z + \sum_{n=2}^\infty \frac{(-1)^n}{n} \zeta(n) z^n. $$ The final result can be easily obtained by expanding $\exp(...)$ to a sufficiently high order: $$ \begin{split} \Gamma(z) &= \frac{1}{z} \exp\left(-\gamma z + \frac{1}{2} \zeta(2) z^2 - \frac{1}{3} \zeta(3) z^3 + \mathcal{O}\bigl(z^4\bigr) \right) \\ &= \frac{1}{z} - \gamma + \frac{1}{2} \left( \gamma^2 + \zeta(2) \right) z - \frac{1}{6} \left( \gamma^3 + 3 \gamma \zeta(2) + 2 \zeta(3) \right) z^2 + \mathcal{O}\bigl(z^3\bigr). \end{split} $$

$\endgroup$
1
  • $\begingroup$ Beware of sign errors in the Laurent expansion in Appendix 4 of the Patterson book (page 135) in doi.org/10.1017/CBO9780511623707.012 $\endgroup$ Commented Jul 11 at 16:59

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.