5
$\begingroup$

While reading about combinatorial mathematics, I found this article about the Stirling transform which caught my attention.

So, if I wanted to find the Stirling transform of, for instance, $(k-1)!$, I'd have to solve this sum (using the explicit formula for the Stirling number of the second kind): $$\sum_{k=1}^{n}\left(\frac{1}{k!}\sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j}j^n(k-1)!\right)$$

It looks complicated. Is it even possible to find the Stirling transform directly from this sum? I don't know how to start. Mathematica gives the answer $(-1)^n\operatorname{Li}_{1-n}(2)$. I'd really like to know how to arrive at that result.

Any ideas or hints will be appreciated.

$\endgroup$

1 Answer 1

2
$\begingroup$

Note: The double sum expression stated in OPs question is already a perfectly valid representation of the Stirling transform of the sequence $(a_n)_{n\geq 1}=\left((n-1)!\right)_{n\geq 1}$ with respect to its definition.

So, here we are looking for a different representation of the Stirling transform of $(a_n)_{n\geq 1}$ which could be regarded as more convenient or simpler according to our needs. Regrettably, a considerable simplification, e.g. reducing a sum don't presumably exist. But we establish the connection of OPs Stirling transform with the Polylogarithm $\operatorname{Li}_{1-n}(2)$ provided by Mathematica.

Let's denote the Stirling numbers of the second kind with $\begin{Bmatrix}n\\k\end{Bmatrix}$. If $(a_n)_{n\geq 1}$ is a sequence of numbers then the sequence $(b_n)_{n\geq 1}$ with \begin{align*} b_n=\sum_{k=1}^n\begin{Bmatrix}n\\k\end{Bmatrix}a_k\tag{1} \end{align*} is called the Stirling transform of $(a_n)_{n\geq 1}$.

$$$$

Stirling transform of $(a_n)_{n\geq 1}=\big((n-1)!\big)_{n\geq 1}$

According to formula (1) we obtain using an explicit expression for $\begin{Bmatrix}n\\k\end{Bmatrix}$ \begin{align*} b_n&=\sum_{k=1}^{n}\frac{1}{k!}\sum_{j=1}^k(-1)^{k-j}\binom{k}{j}j^na_k\\ &=\sum_{k=1}^{n}\frac{1}{k!}\sum_{j=1}^k(-1)^{k-j}\binom{k}{j}j^n(k-1)!\\ &=\sum_{k=1}^n\sum_{j=1}^{k}(-1)^{k-j}\binom{k-1}{j-1}j^{n-1}\tag{2} \end{align*}

$$$$

Generating functions: We introduce the generating functions $f,g$ with \begin{align*} f(x)&=\sum_{n=1}^{\infty}a_n\frac{x^n}{n!} =\sum_{n=1}^{\infty}(n-1)!\frac{x^n}{n!}=\sum_{n=1}^{\infty}\frac{x^n}{n}\\ &=-\ln(1-x)\\ g(x)&=\sum_{n=1}^{\infty}b_n\frac{x^n}{n!} \end{align*}

The representation of (2) in terms of generating functions is according to this Wiki page \begin{align*} g(x)=f(e^x-1) \end{align*} We conclude \begin{align*} g(x)&=f(e^x-1)\\ &=-\ln (2-e^x)\\ &=-\ln 2 -\ln\left(1-\frac{e^x}{2}\right)\tag{3}\\ \end{align*} Expanding the logarithmic series we obtain \begin{align*} -\ln\left(1-\frac{e^x}{2}\right)&=\sum_{j=1}^{\infty}\frac{1}{2^j}\frac{e^{jx}}{j}\\ &=\sum_{j=1}^{\infty}\frac{1}{2^jj}\sum_{m=0}^{\infty}\frac{(jx)^m}{m!}\\ &=\sum_{m=0}^{\infty}\left(\sum_{j=1}^{\infty}\frac{1}{2^j}j^{m-1}\right)\frac{x^m}{m!}\\ &=\ln(2)+\sum_{m=1}^{\infty}\left(\sum_{j=1}^{\infty}\frac{1}{2^j}j^{m-1}\right)\frac{x^m}{m!}\tag{4}\\ \end{align*}

Combining (3) and (4) we get

\begin{align*} g(x)=\sum_{m=1}^{\infty}\left(\sum_{j=1}^{\infty}\frac{1}{2^j}j^{m-1}\right)\frac{x^m}{m!} \end{align*}

We use the coefficient of operator $[x^m]$ to denote the coefficient of $x^{m}$ in $g(x)$ and obtain

\begin{align*} b_n&=\frac{1}{n!}[x^n]g(x)=\sum_{j=1}^{\infty}\frac{1}{2^j}j^{n-1}\qquad\qquad n\geq 1\tag{5} \end{align*}

$$$$

Polylogarithms: According to the definition of the Polylogarithm

\begin{align*} \operatorname{Li}_s(x):=\sum_{j=1}^{\infty}\frac{x^j}{j^s}\qquad\qquad |x|< 1, s\in\mathbb{C} \end{align*}

we observe the RHS of (5) can be written letting $x=\frac{1}{2}$ and $s=1-n$

\begin{align*} b_n=\sum_{j=1}^{\infty}\frac{1}{2^j}j^{n-1}=\operatorname{Li}_{1-n}\left(\frac{1}{2}\right) \end{align*}

Since the following identity is valid for $n\geq 1$

\begin{align*} \operatorname{Li}_{-n}(x)+(-1)^n\operatorname{Li}_{-n}\left(\frac{1}{x}\right)=0 \end{align*}

we conclude

\begin{align*} b_n=\operatorname{Li}_{1-n}\left(\frac{1}{2}\right)=(-1)^n\operatorname{Li}_{1-n}(2)\qquad\qquad n\geq 1 \end{align*}

which corresponds with the result of Mathematica.

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.