An alternative way to solve this problem is by using the Wronskian. Put \begin{align*} f(t) &= 1 + 2\,t+ t^2 & g(t) &= 3-9\,t^2 & h(t) &= 1 + 4\,t + 5\,t^2 \end{align*} and define $$ W(t)= \begin{bmatrix} f(t) & g(t) & h(t) \\ f^\prime(t) &g^\prime(t) & h^\prime(t) \\ f^{\prime\prime}(t) & g^{\prime\prime}(t) & h^{\prime\prime}(t) \end{bmatrix} = \begin{bmatrix} 1+2\,t+t^2 & 3-9\,t^2 & 1+4\,t+5\,t^2 \\ 2+2\,t & -18\,t & 4+10\,t \\ 2 & -18 & 10 \end{bmatrix} $$ If there exists a $t_0$ such that $\det W(t_0)\neq 0$, then $\{f,g,h\}$ is linearly independent. Since each of $f$, $g$, and $h$ is analytic, if $\det W(t)=0$ for all $t\in\Bbb R$, then $\{f,g,h\}$ is linearly dependent.
Now, note that adding $\DeclareMathOperator{Col}{Col}9\cdot\Col_1$ to $\Col_2$ and subtracting $5\cdot\Col_1$ from $\Col_3$ gives $$ \det W(t) = \begin{vmatrix} 1+2\,t+t^2 &12+18\,t& -4-6\,t \\ 2+2\,t&18&-6 \\ 2&0&0 \end{vmatrix} $$ Then adding $3\cdot\Col_3$ to $\Col_2$ gives $$ \det W(t) = \begin{vmatrix} 1+2\,t+t^2 & 0 & -4-6\,t \\ 2+2\,t & 0 & -6 \\ 2 & 0 & 0 \end{vmatrix} = 0 $$ This implies that $\{f,g,h\}$ is linearly dependent.