While waiting for face $k$, the probability of rolling faces already rolled is $\frac{k-1}n$. Therefore, the expected number of rolls to get face $k$, after rolling face $k-1$, is $$ \begin{align} \sum_{j=1}^\infty\overbrace{\left(\frac{k-1}n\right)^{j-1}}^{\text{roll $j-1$ already rolled}}\ \ \overbrace{\frac{n-k+1}n\vphantom{\left(\frac kn\right)^1}}^{\text{roll $1$ not rolled}}\,j &=\frac{n-k+1}n\frac1{\left(1-\frac{k-1}n\right)^2}\\ &=\frac{n}{n-k+1} \end{align} $$ Thus, the expected number of rolls to get all the faces is $$ \begin{align} \sum_{k=1}^n\frac{n}{n-k+1} &=n\sum_{k=1}^n\frac1k\\ &\sim n\log(n)+\gamma n+\frac12-\frac1{12n}+O\left(\frac1{n^3}\right) \end{align} $$ where $\gamma$ is the Euler-Mascheroni Constant. The asymptotic expansion is gotten using the Euler-Maclaurin Sum Formula.
For a $6$-sided die, the expected number of rolls is exactly $14.7$.
Using the terms given in the asymptotic expansion for $n=6$ gives $14.69996$. The approximation gets better for larger $n$.