Let $\sigma_n^{(k)}=\frac{1}{n+1}\sum_{j=0}^{n}\sigma_j^{(k-1)}$ and $\sigma_n^{(1)}=\frac{1}{n+1}\sum_{j=0}^{n}s_j.$
If $\lim_{n\to \infty}\sigma_n^{(k)}=L$ we call the sequence $(s_n)$ is summable $H_k$ to $L.$
Also the sequence $(s_n)$ is called Abel summable to $L$ if $\lim_{x\to1^{-}}(1-x)\sum_{j=0}^{n}s_jx^j=L.$
Does $H_k$ summability of $(s_n)$ to $L$ imply its Abel summability to $L?$
Also, are there any sequence which is Abel summable but not $H_k$ summable?