0
$\begingroup$

Given a friction-less slide $y=x^2$, place a particle on the slide at $(1,1)$. The particle is acted upon by constant gravity $g= 9.8$ units/s/s. At what time does it reach bottom?

The following is work done so far: Potential energy lost = Kinetic energy gained. $$ mass \cdot g \cdot (1-y) = \frac{1}{2} \cdot mass \cdot \|\mathbf{v}\|^2 $$ $$ \sqrt{2g(1-y)}= \|\mathbf{v}\| $$ Here $m$ is slope of the curve at the particle's position $$ v_x= -\| \mathbf{v} \| \cos{ \left( \arctan{m} \right) } $$ $$ v_y= -\| \mathbf{v} \| \sin{ \left( \arctan{m} \right) } $$ Here using trig identities $$ \cos{ \left( \arctan{m} \right) } = \frac{1}{\sqrt{1+m^2}} $$

$$ \sin{ \left( \arctan{m} \right) } = \frac{m}{\sqrt{1+m^2}} $$

So $$ v_x = -\| \mathbf{v} \| \frac{1}{\sqrt{1+m^2}} $$ $$ x' = -\sqrt{2g(1-x^2)} \cdot \frac{1}{\sqrt{1+(2x)^2}} $$ and $$ v_y = -\| \mathbf{v} \| \frac{m}{\sqrt{1+m^2}} $$ $$ y' = -\sqrt{2g(1-y)} \cdot \frac{2\sqrt{y}}{\sqrt{1+(2\sqrt{y})^2}} $$

$\endgroup$
2
  • $\begingroup$ Work done so far: Given conservation of energy under constant gravity, potential energy + kinetic energy = constant. $\endgroup$ Commented May 9, 2016 at 5:43
  • $\begingroup$ For a particle at (x,y=x^2), it has fallen by a height 1-y, hence mass*g*(1-y)= 1/2 * mass * v^2. So v= sqrt(2g(1-y)) $\endgroup$ Commented May 9, 2016 at 7:09

1 Answer 1

2
$\begingroup$

So you found

$$ \frac{\mathrm ds}{\mathrm dt}=\sqrt{2g(1-x^2)}\;. $$

We also have

\begin{align} \frac{\mathrm ds}{\mathrm dx} &=\sqrt{1+\left(\frac{\mathrm dy}{\mathrm dx}\right)^2} \\ &=\sqrt{1+4x^2}\;. \end{align}

Thus

\begin{align} \frac{\mathrm dt}{\mathrm dx} &=\frac{\mathrm ds}{\mathrm dx}\cdot\frac{\mathrm dt}{\mathrm ds} \\ &=\sqrt{\frac{1+4x^2}{2g(1-x^2)}}\;, \end{align}

and

\begin{align} t&=\int_0^1\mathrm dx\frac{\mathrm dt}{\mathrm dx}\\ &=\int_0^1\mathrm dx\sqrt{\frac{1+4x^2}{2g(1-x^2)}} \\ &= \frac{E(-4)}{\sqrt{2g}} \\ &\approx \frac{2.63518}{\sqrt{2g}} \\ &\approx0.595\text s\;, \end{align}

(Wolfram|Alpha computation of the integral), where $E(m)$ is the complete elliptic integral of the second kind with parameter $m=k^2$.

$\endgroup$
1
  • $\begingroup$ amazing answer, thanks a lot $\endgroup$ Commented May 9, 2016 at 8:18

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.