Given a friction-less slide $y=x^2$, place a particle on the slide at $(1,1)$. The particle is acted upon by constant gravity $g= 9.8$ units/s/s. At what time does it reach bottom?
The following is work done so far: Potential energy lost = Kinetic energy gained. $$ mass \cdot g \cdot (1-y) = \frac{1}{2} \cdot mass \cdot \|\mathbf{v}\|^2 $$ $$ \sqrt{2g(1-y)}= \|\mathbf{v}\| $$ Here $m$ is slope of the curve at the particle's position $$ v_x= -\| \mathbf{v} \| \cos{ \left( \arctan{m} \right) } $$ $$ v_y= -\| \mathbf{v} \| \sin{ \left( \arctan{m} \right) } $$ Here using trig identities $$ \cos{ \left( \arctan{m} \right) } = \frac{1}{\sqrt{1+m^2}} $$
$$ \sin{ \left( \arctan{m} \right) } = \frac{m}{\sqrt{1+m^2}} $$
So $$ v_x = -\| \mathbf{v} \| \frac{1}{\sqrt{1+m^2}} $$ $$ x' = -\sqrt{2g(1-x^2)} \cdot \frac{1}{\sqrt{1+(2x)^2}} $$ and $$ v_y = -\| \mathbf{v} \| \frac{m}{\sqrt{1+m^2}} $$ $$ y' = -\sqrt{2g(1-y)} \cdot \frac{2\sqrt{y}}{\sqrt{1+(2\sqrt{y})^2}} $$