21
$\begingroup$

In order to compute, in an elementary way,

$\displaystyle \int_0^1 \frac{x \arctan x \log \left( 1-x^2\right)}{1+x^2}dx$

(see Evaluating $\int_0^1 \frac{x \arctan x \log \left( 1-x^2\right)}{1+x^2}dx$)

i need to show, in a simple way, that:

$\displaystyle \int_0^1 \dfrac{\arctan x \log x}{1+x}dx=\dfrac{G\ln 2}{2}-\dfrac{\pi^3}{64}$

$G$ is the Catalan's constant.

$\endgroup$
3
  • 6
    $\begingroup$ What is your question? What does simple way mean? Do you already know some other way which you are not satisfied with? $\endgroup$ Commented Jun 28, 2016 at 9:59
  • 3
    $\begingroup$ Moreover, why do you think there is an elementary way to evaluate the linked integral? $\endgroup$ Commented Jun 28, 2016 at 10:04
  • 1
    $\begingroup$ "simple way": use of change of variable, double, triple integrals, derivation under integral and such stuff. Anyway, if you have a solution, whatever it's, i'm interrested. I don't know if a simple solution do exist. $\endgroup$ Commented Jun 28, 2016 at 10:14

7 Answers 7

24
$\begingroup$

I finally get a solution (i swear i didn't know it when i have posted the question)

Define for $x\in [0,1]$ the function $F$:

$\displaystyle F(x)=\int_0^x \dfrac{\ln t}{1+t}dt$

Notice that $F(1)=-\dfrac{\pi^2}{12}$

(use Taylor's development)

and, after performing the change of variable $y=\dfrac{t}{x}$,

$\displaystyle F(x)=\int_0^1 \dfrac{x\ln(xy)}{1+xy}dy$

Since that:

$\Big[F(x)\arctan x\Big]_0^1=-\dfrac{\pi^3}{48}$

then,

$\displaystyle -\dfrac{\pi^3}{48}=\int_0^1 \dfrac{F(x)}{1+x^2}dx+\int_0^1 \dfrac{\arctan x\ln x}{1+x}dx$

$\displaystyle\int_0^1 \dfrac{F(x)}{1+x^2}dx=\int_0^1\int_0^1 \dfrac{x\ln(xy)}{(1+xy)(1+x^2)}dxdy$

$\displaystyle\int_0^1 \dfrac{F(x)}{1+x^2}dx=\int_0^1\int_0^1 \dfrac{x\ln(x)}{(1+xy)(1+x^2)}dxdy+\int_0^1\int_0^1 \dfrac{x\ln(y)}{(1+xy)(1+x^2)}dxdy$

$\displaystyle\int_0^1 \dfrac{F(x)}{1+x^2}dx=\int_0^1\left[\dfrac{\ln x\ln(1+xy)}{1+x^2}\right]_{y=0}^{y=1} dx+ \displaystyle \int_0^1 \left[-\dfrac{\ln y\ln(1+xy)}{1+y^2}+\dfrac{\ln y\ln(1+x^2)}{2(1+y^2)}+\dfrac{y\ln y\arctan x}{1+y^2}\right]_{x=0}^{x=1}dy$

$\displaystyle\int_0^1 \dfrac{F(x)}{1+x^2}dx= \int_0^1 \dfrac{\ln x\ln(1+x)}{1+x^2}dx-\int_0^1\dfrac{\ln y\ln(1+y)}{1+y^2}dy+\dfrac{\ln 2}{2}\int_0^1 \dfrac{\ln y}{1+y^2}dy+ \dfrac{\pi}{4}\times \int_0^1 \dfrac{y\ln y}{1+y^2}dy$

Using Taylor's development,

$\displaystyle \int_0^1 \dfrac{y\ln y}{1+y^2}dy=-\dfrac{\pi^2}{48}$

And it's well known that, $\displaystyle -G=\int_0^1\dfrac{\ln y}{1+y^2}dy$

Therefore,

$\displaystyle\int_0^1 \dfrac{F(x)}{1+x^2}dx=-\dfrac{G\ln 2}{2}-\dfrac{\pi^3}{192}$

And finally,

$\displaystyle \int_0^1 \dfrac{\arctan x \ln x}{1+x}dx=\dfrac{G\ln 2}{2}-\dfrac{\pi^3}{64}$

(I hope there is no mistake, this proof is too wonderful to be true )

NB:

Added, July 2, 2019.

The above computation is the result of "reverse engineering". I was searching for a way to express $\pi^3$ as in integral. If you introduce the function, for $x\in [0;1]$, \begin{align}\displaystyle F(x)&=\int_0^x \dfrac{\ln t}{1+t}dt\\ &=\int_0^1 \dfrac{x\ln(tx)}{1+tx}dt \end{align} Observe that, \begin{align}\frac{\partial F(x)}{\partial x}&=\dfrac{\ln x}{1+x}\\ F(1)&=-\frac{\pi^2}{12} \end{align}

Then, \begin{align}-\frac{\pi^3}{48}&=\Big[F(x)\arctan x\Big]_0^1\\ \end{align} And, \begin{align}\frac{\partial F(x)}{\partial x}\arctan x=\frac{\arctan x\ln x}{1+x}\end{align}

Thus, one can apply integration by parts, \begin{align}\int_0^1 \frac{\arctan x\ln x}{1+x}\,dx&=\int_0^1 \frac{\partial F(x)}{\partial x}\arctan x\,dx\end{align} and so on,

$\endgroup$
4
  • $\begingroup$ If there is no error. It's too wonderful to be true , i can't believe that's true $\endgroup$ Commented Jun 28, 2016 at 13:59
  • 1
    $\begingroup$ I am not able to spot any mistake. It is a nice trick to work with two variables, it happens very often that by sticking to single-variable manipulations life gets hard in these cases. $\endgroup$ Commented Jun 28, 2016 at 14:06
  • 1
    $\begingroup$ very elegant approach. $\endgroup$ Commented May 1, 2019 at 13:38
  • 1
    $\begingroup$ Hi FDP, I found a generalization for $\int_0^1 \frac{\arctan(x)\ln^{a}(x)}{1+x}dx$ using your method. Do you mind if I include it in my upcoming article and I cite your solution? $\endgroup$ Commented Aug 7, 2023 at 4:28
9
$\begingroup$

Let we deal with a basic problem first, i.e. the computation of $$ C_{2n+1} = \int_{0}^{1}\frac{x^{2n+1}\log x}{1+x}\,dx = \int_{0}^{+\infty}\frac{t e^{-(2n+2)t}}{1+e^{-t}}\,dt\tag{1}$$ Since $\int_{0}^{+\infty}t e^{-mt}\,dt = \frac{1}{m^2}$, we have: $$ -C_{2n+1} = \frac{1}{(2n+2)^2}-\frac{1}{(2n+3)^2}+\frac{1}{(2n+4)^2}-\ldots=\frac{\psi'(n+1)-\psi'\left(n+\frac{3}{2}\right)}{4}\tag{2}$$ and: $$ I=\int_{0}^{1}\frac{\arctan(x)\log(x)}{1+x}\,dx = -\sum_{n\geq 0}\frac{(-1)^n C_{2n+1}}{2n+1}=-\sum_{m\geq 0}\sum_{n\geq 0}\frac{(-1)^{n+m}}{(2n+1)(2n+m+2)^2}\tag{3}$$ By reindexing the last double series, $$ I = -\sum_{s=0}^{+\infty}\sum_{p=0}^{s}\frac{(-1)^s}{(2p+1)(p+s+2)^2}=-\sum_{p=0}^{+\infty}\sum_{s\geq p}\frac{(-1)^s}{(p+s+2)^2(2p+1)}\tag{4}$$ hence, in terms of the Hurwitz zeta function: $$ I = -\sum_{p\geq 0}\frac{(-1)^p}{4(p+1)}\left(\zeta\left(2,p+1\right)-\zeta\left(2,p+\frac{3}{2}\right)\right)\tag{5}$$ or, by using the inverse Laplace transform: $$ I = -\int_{0}^{+\infty}\frac{s e^{s/2}\log(1+e^{-s})}{4(1+e^{s/2})}\,ds =-\int_{0}^{+\infty}\frac{s e^s \log(1+e^{-2s})}{1+e^s}\,ds\tag{6}$$ where the last integral is a bit more manageable than the initial one (we made the arctangent function disappear). The constants $K,\log 2$ and $$ \sum_{n\geq 0}\frac{(-1)^n}{(2n+1)^3}=\frac{\pi^3}{32} \tag{7}$$ (see here for the last identity) should simply appear by integration by parts.


With a suitable change of variable and differentiation under the integral sign, we may probably also exploit the integral remainder term in the second Binet's formula for $\log\Gamma$.

$\endgroup$
2
  • $\begingroup$ Very Nice :) (+1) $\endgroup$ Commented Jun 28, 2016 at 14:10
  • 1
    $\begingroup$ Nice but too clever for me $\endgroup$ Commented Jun 28, 2016 at 14:38
4
$\begingroup$

Different approach:

start with applying integration by parts

$$I=\int_0^1\frac{\tan^{-1}(x)\ln(x)}{1+x}dx\\=\left|(\operatorname{Li}_2(-x)+\ln(x)\ln(1+x))\tan^{-1}(x)\right|_0^1-\int_0^1\frac{\operatorname{Li}_2(-x)+\ln(x)\ln(1+x)}{1+x^2}dx$$

$$=-\frac{\pi^3}{48}-\int_0^1\frac{\operatorname{Li}_2(-x)}{1+x^2}dx-\color{blue}{\int_0^1\frac{\ln(x)\ln(1+x)}{1+x^2}dx}\tag1$$


From $$\operatorname{Li}_2(x)=-\int_0^1\frac{x\ln(y)}{1-xy}dy$$

it follows that

$$\int_0^1\frac{\operatorname{Li}_2(-x)}{1+x^2}dx=\int_0^1\frac1{1+x^2}\left(\int_0^1\frac{x\ln(y)}{1+xy}dy\right)dx$$

$$=\int_0^1\ln(y)\left(\int_0^1\frac{x}{(1+x^2)(1+yx)}dx\right)dy$$

$$=\int_0^1\ln(y)\left(\frac{\pi}{4}\frac{y}{1+y^2}-\frac{\ln(1+y)}{1+y^2}+\frac{\ln(2)}{2(1+y^2)}\right)dy$$

$$=-\frac{\pi^3}{192}-\color{blue}{\int_0^1\frac{\ln(y)\ln(1+y)}{1+y^2}dy}-\frac12\ln(2)\ G\tag2$$

By plugging $(2)$ in $(1)$, the blue integral magically cancels out and we get $I=\frac12G\ln2-\frac{\pi^3}{64}$.

$\endgroup$
3
  • $\begingroup$ @omegadot i think you will like this answer :) $\endgroup$ Commented Nov 20, 2019 at 23:36
  • $\begingroup$ I do indeed. Now if only one could find a value for the blue integral. It pops up in a number of problems like this which I have seen, before magically disappearing again. $\endgroup$ Commented Dec 30, 2019 at 6:09
  • $\begingroup$ @omegadot I think the blue integral is manageable we can just evaluate $\int_0^1 \frac{\operatorname{Li}_2(-x)}{1+x^2}dx$ by converting the boundaries from $(0,1)$ to $(0,\infty)$ and we follow the same steps above. $\endgroup$ Commented Dec 30, 2019 at 6:32
3
$\begingroup$

\begin{align*} I &= \int\limits_{0}^{1}\frac{\ln x \arctan x}{1+x}\, \mathrm{d}x = \int\limits_{0}^{1}\frac{\ln x}{1+x}\, \mathrm{d}x \int\limits_{0}^{1}\frac{x}{1+a^2x^2}\, \mathrm{d}a \\ &= \int\limits_{0}^{1}\mathrm{d}a \int\limits_{0}^{1}\frac{x \ln x}{(1+x)\left(1+a^2x^2\right)}\, \mathrm{d}x = \int\limits_{0}^{1} J(a)\, \mathrm{d}a \end{align*}

\begin{align*} J(a) &= \int\limits_{0}^{1}\frac{x\ln x}{(1+x)\left( 1+a^2x^2 \right)}\, \mathrm{d}x = -\int\limits_{1}^{\infty }\frac{\ln x}{(1+x)\left( x^2+a^2 \right)}\,\mathrm{d}x = -\frac{\Gamma(2)}{2\pi i}\oint \frac{\mathrm{Li}_2(z)}{(1+z)\left( z^2+a^2 \right)}\, \mathrm{d}z \\ &= \frac{\mathrm{Li}_2(-1)}{1+a^2} + \frac{\mathrm{Li}(ia)}{2ia(1+ia)} - \frac{\mathrm{Li}(-ia)}{-2ia(1-ia)} = -\frac{\mathrm{Li}_2(-1)}{1+a^2} - \mathrm{Im}\left\{ \frac{\mathrm{Li}_2(ia)}{a(1+ia)} \right\} \end{align*}

\begin{align*} I &= -\int\limits_{0}^{1}\frac{\mathrm{Li}_2(-1)}{1+a^2}\, \mathrm{d}a - \int\limits_{0}^{1}\frac{\mathrm{d}a}{a}\mathrm{Im}\left\{ \frac{\mathrm{Li}_2(ia)}{1+ia} \right\} = \frac{\pi^2}{12} \cdot \frac{\pi}{4} - \mathrm{Im} \int\limits_{0}^{1} \mathrm{d}a\left[ \frac{1}{a} - \frac{i}{1+ia} \right]\mathrm{Li}_2(ia) \\ &= \frac{\pi^3}{48} - \mathrm{Im}\int\limits_{0}^{1}\mathrm{d}a\frac{\mathrm{Li}_2(ia)}{a} + \mathrm{Im}\int\limits_{0}^{1}i\frac{\mathrm{Li}_2(ia)}{1+ia}\, \mathrm{d}a = \frac{\pi^3}{48} - \mathrm{Im}\left\{ \mathrm{Li}_3(i) \right\} - \mathrm{Re}\left\{ \int\limits_{0}^{1}\frac{\mathrm{Li}_2(ia)}{1+ia}\, \mathrm{d}a \right\} \end{align*}

$$\boxed{\mathrm{Re}\left\{ \int\limits_{0}^{1}\frac{\mathrm{Li}_2(ia)}{1+ia}\, \mathrm{d}a \right\}=\mathrm{Im}\left\{ \ln(1+i)\mathrm{Li}_2(i) \right\}=\frac{1}{2}\ln (2)\mathrm{G}-\frac{\pi^3}{192}}$$

$$I=\frac{\pi^3}{48}-\frac{\pi^3}{32}-\frac{\pi^3}{192}+\frac{\mathrm{G}}{2}\ln 2=\frac{\mathrm{G}}{2}\ln 2-\frac{\pi^3}{64}$$

$\endgroup$
2
$\begingroup$

Hint:

set $x=e^{-y}$ we have \begin{align} & \int_{0}^{1}{\frac{{{\tan }^{-1}}x\,\,\ln x}{1+x}}\,dx=\int_{0}^{\infty }{\,\frac{-y\,{{e}^{-y}}{{\tan }^{-1}}({{e}^{-y}})\,}{1+{{e}^{-y}}}}\,dy \\ \\ & {-{e}^{-y}}{{\tan }^{-1}}({{e}^{-y}})=-{e}^{-y}\sum\limits_{n=1}^{\infty }{\frac{{{(-1)}^{n+1}}}{2n-1}{{e}^{-(2n-1)y}}}=\sum\limits_{n=1}^{\infty }{\frac{{{(-1)}^{n}}}{2n-1}{{e}^{-2n\,y}}} \\ \\ & \frac{1}{1+{{e}^{-y}}}=\sum\limits_{n=0}^{\infty }{{{(-1)}^{n}}{{e}^{-ny}}} \\ \end{align}

$\endgroup$
4
  • 2
    $\begingroup$ ok, but what now? $\endgroup$ Commented Jun 28, 2016 at 10:27
  • $\begingroup$ so complex but it is heuristic. $\endgroup$ Commented Jun 28, 2016 at 10:30
  • 1
    $\begingroup$ factor $ln x$ isn't the problem. $\displaystyle \int_0^1 x^n\ln x dx=-\dfrac{1}{(1+n)^2}$ $\endgroup$ Commented Jun 28, 2016 at 10:53
  • 4
    $\begingroup$ Do you really know if this hint actually leads to an elementary way of computing the integral? Judging by your comment it is not clear. $\endgroup$ Commented Jun 28, 2016 at 12:25
2
$\begingroup$

This is a long solution but I hope you find it useful.

First lets consider the integral: \begin{align*} I&=\int_0^1\frac{\ln x\arctan x}{x(1+x)}\ dx\\ &=\sum_{n=0}^{\infty}\frac{(-1)^n}{2n+1}\int_0^1\frac{x^{2n}\ln x}{1+x}\ dx\\ &=\frac12\sum_{n=0}^{\infty}\frac{(-1)^n}{2n+1}\frac{\partial}{\partial{n}}\int_0^1\frac{x^{2n}}{1+x}\ dx\\ &=\frac12\sum_{n=0}^{\infty}\frac{(-1)^n}{2n+1}\frac{\partial}{\partial{n}}\left(H_n-H_{2n}+\ln2\right)\\ &=\frac12\sum_{n=0}^{\infty}\frac{(-1)^n}{2n+1}\left(2H_{2n}^{(2)}-H_n^{(2)}-\zeta(2)\right)\\ &=\frac12\sum_{n=0}^{\infty}\frac{(-1)^n}{2n+1}\left(2H_{2n}^{(2)}-H_n^{(2)}\right)-\frac{\pi^3}{48}\tag{1} \end{align*}

on the other hand, \begin{align*} I=\int_0^1\frac{\ln x\arctan x}{x(1+x)}\ dx=\int_0^1\frac{\ln x\arctan x}{x}\ dx-\int_0^1\frac{\ln x\arctan x}{1+x}\ dx\tag{2} \end{align*} where \begin{align*} \int_0^1\frac{\ln x\arctan x}{x}\ dx&=\sum_{n=0}^{\infty}\frac{(-1)^n}{2n+1}\int_0^1x^{2n}\ln x\ dx=-\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n+1)^3}=-\frac{\pi^3}{32} \end{align*}

we can conclude from $(1)$ and $(2)$ that \begin{align*} \int_0^1\frac{\ln x\arctan x}{1+x}\ dx&=-\frac{\pi^3}{96}-\frac12\sum_{n=0}^{\infty}\frac{(-1)^n}{2n+1}\left(2H_{2n}^{(2)}-H_n^{(2)}\right)\\ &=-\frac{\pi^3}{96}-\frac12\left(2S_1-S_2\right)\tag{3} \end{align*} \begin{align} S_1&=\sum_{n=0}^\infty\frac{(-1)^nH_{2n}^{(2)}}{2n+1}\\ &=\sum_{n=0}^\infty\frac{(-1)^nH_{2n+1}^{(2)}}{2n+1}-\sum_{n=0}^\infty\frac{(-1)^n}{(2n+1)^3}\\ &\boxed{=\Im\sum_{n=1}^\infty\frac{i^nH_n^{(2)}}{n}-\frac{\pi^3}{32}=S_1} \end{align} \begin{align} S_2&=\sum_{n=0}^\infty\frac{(-1)^nH_{n}^{(2)}}{2n+1}\\ &=\sum_{n=0}^\infty(-1)^nH_n^{(2)}\int_0^1x^{2n}\ dx\\ &=\int_0^1\sum_{n=0}^\infty H_n^{(2)}(-x^2)^n\\ &=\int_0^1\frac{\operatorname{Li}_2(-x^2)}{1+x^2}\ dx \quad \text{ apply IBP}\\ &=-\frac{\pi^3}{48}+2\int_0^1\frac{\arctan x\ln(1+x^2)}{x}\ dx\tag{#}\\ &=-\frac{\pi^3}{48}-4\sum_{n=0}^\infty\frac{(-1)^nH_{2n}}{2n+1}\int_0^1x^{2n}\ dx\\ &=-\frac{\pi^3}{48}-4\sum_{n=0}^\infty\frac{(-1)^nH_{2n}}{(2n+1)^2}\\ &=-\frac{\pi^3}{48}-4\sum_{n=0}^\infty\frac{(-1)^nH_{2n+1}}{(2n+1)^2}+4\sum_{n=0}^\infty\frac{(-1)^n}{(2n+1)^3}\\ &=-\frac{\pi^3}{48}-4\sum_{n=0}^\infty\frac{(-1)^nH_{2n+1}}{(2n+1)^2}+4\times\frac{\pi^3}{32}\\ &\boxed{=-4\Im\sum_{n=1}^\infty\frac{i^nH_n}{n^2}+\frac{5\pi^3}{48}=S_2} \end{align} note that in line $\text{(#)}$, we used $\ \displaystyle\arctan x\ln(1+x^2)=-2\sum_{n=0}^{\infty}\frac{(-1)^n H_{2n}} {2n+1}x^{2n+1}\ $ (see here).

Plugging $S_1$ and $S_2$ in $(3)$, we get $$\int_0^1\frac{\arctan x\ln x}{1+x}\ dx=\frac{7\pi^3}{96}-\Im\left(\sum_{n=1}^\infty\frac{i^nH_n^{(2)}}{n}+2\sum_{n=1}^\infty\frac{i^nH_n}{n^2}\right)$$

using the generating functions: $$\sum_{n=1}^\infty\frac{x^nH_n^{(2)}}{n}=\operatorname{Li}_3(x)+2\operatorname{Li}_3(1-x)-\ln(1-x)\operatorname{Li}_2(1-x)-\zeta(2)\ln(1-x)-2\zeta(3)$$

$$\sum_{n=1}^\infty\frac{x^nH_n}{n^2}=\operatorname{Li}_3(x)-\operatorname{Li}_3(1-x)+\ln(1-x)\operatorname{Li}_2(1-x)+\frac12\ln^2x\ln(1-x)+\zeta(3)$$ then \begin{align} \sum_{n=1}^\infty\frac{x^nH_n^{(2)}}{n}+2\sum_{n=1}^\infty\frac{x^nH_n}{n^2}&=3\operatorname{Li}_3(x)+\ln(1-x)\{\operatorname{Li}_2(1-x)+\ln x\ln(1-x)-\zeta(2)\}\\ &=3\operatorname{Li}_3(x)-\ln(1-x)\operatorname{Li}_2(x) \end{align} where in the last line, we used the reflection identity. taking $x=i$ , we get \begin{align} \Im\left(\sum_{n=1}^\infty\frac{i^nH_n^{(2)}}{n}+2\sum_{n=1}^\infty\frac{i^nH_n}{n^2}\right)&=\Im\left(3\operatorname{Li}_3(i)-\ln(1-i)\operatorname{Li}_2(i)\right)\\ &=\frac{17\pi^3}{192}-\frac12G\ln2 \end{align} which follows \begin{align} \int_0^1\frac{\arctan x\ln x}{1+x}\ dx&=\frac{7\pi^3}{96}-\left(\frac{17\pi^3}{192}-\frac12G\ln2\right)\\ &=\frac12G\ln2-\frac{\pi^3}{64} \end{align}

$\endgroup$
5
  • $\begingroup$ Any thoughts on how to sum those Euler sums? $\endgroup$ Commented Jun 15, 2019 at 6:26
  • $\begingroup$ @omegadot the first sum is easy, as for the second one , I haven't tried it yet. $\endgroup$ Commented Jun 15, 2019 at 9:32
  • $\begingroup$ @omegadot you can see a full solution now. I did little manipulation with these two sums. they can be evaluated separately but I chose a short cut. hope you like it. $\endgroup$ Commented Jul 2, 2019 at 1:22
  • 2
    $\begingroup$ Very nice. The magic key here to evaluating these Euler sums is by using appropriate generating functions evaluated at $x = i$. $\endgroup$ Commented Jul 2, 2019 at 2:13
  • $\begingroup$ @omegadot yes i would say thats the key but i am sure there is a much shorter hidden way to manipulate with these two sums. i will investigate into that. $\endgroup$ Commented Jul 2, 2019 at 2:25
2
$\begingroup$

\begin{align} \int_0^1 &\frac{\ln x\tan^{-1} x}{1+x}\ dx =\int_0^1\int_0^x \frac{\ln x}{(1+x)(1+y^2)}dy\ dx\\=&\int_0^1\int_0^1 \frac{\ln x}{(1+x)(1+y^2)}dx\ dy-\int_0^1\int_0^y \frac{\ln x}{(1+x)(1+y^2)}{dx} dy\\=&-\frac{\pi^3}{48}-\left(-\frac{\pi^3}{192}-\frac12G\ln2 \right)= \frac12 G\ln2-\frac{\pi^3}{64} \end{align} where \begin{align} \int_0^1 &\int_0^y \frac{\ln x}{(1+x)(1+y^2)}\overset{x\to xy}{dx} dy = \int_0^1\int_0^1 \frac{y\ln xy}{(1+xy)(1+y^2)}dx\ dy\\ =&\ \frac12 \int_0^1\int_0^1 \frac{\ln xy}{1+xy}\left(\frac y{ 1+y^2}+ \frac x{ 1+x^2}\right)dx \ dy\>\>\>\>\>(symmetry)\\ =&\int_0^1\int_0^1 {\frac{(x+y)\ln x}{(1+x^2)(1+y^2)}} dx \ dy=-\frac{\pi^3}{192}-\frac12G\ln2 \end{align}

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.