Suppose $p\in[0,1]$ is the probability that the coin lands heads up. Let $q\in[0,1]$ be the probability that a candidate successfully lands heads. Then, the skill ratio is given by $\chi_q:=\frac{q-p}{1-p}$. The candidate throws the coin $N$ times and successfully lands heads $M$ times out of $N$. We use the following estimator $\hat{q}:=\frac{M}{N}$ of $q$, assuming that $q$ is uniformly distributed on $[0,1]$. (The last assumption is the most dubious one. It may be better to assume that $q$ is uniformly distributed on $[p,1]$. However, I do not want to deal with difficult calculations.)
Assume that the measurement yields $\hat{q}=\hat{r}$ for some $\hat{r}\in[0,1]$. Therefore, we need to calculate $$\text{E}\Big(\chi_q\,\Big|\,\hat{q}=\hat{r}\Big)=\int_{0}^1\,\left(\frac{r-p}{1-p}\right)\,f(r,\hat{r})\,\text{d}r\,,$$ where $$f\left(r,\hat{r}\right):=\binom{N}{\hat{r}N}r^{\hat{r}N}(1-r)^{\left(1-\hat{r}\right)N}$$ for all $r\in[0,1]$ and $\hat{r}\in\left\{0,\frac{1}{N},\frac{2}{N},\ldots,\frac{N-1}{N},1\right\}$. This means $$\text{E}\Big(\chi_q\,\Big|\,\hat{q}=\hat{r}\Big)=\frac{1}{1-p}\,\binom{N}{\hat{r}N}\,\left(\frac{\big(\hat{r}N+1\big)!\,\big((1-\hat{r})N\big)!}{(N+2)!}-p\,\left(\frac{\left(\hat{r}N\right)!\,\big((1-\hat{r})N\big)!}{(N+1)!}\right)\right)\,.$$ That is, $$\mu:=\text{E}\Big(\chi_q\,\Big|\,\hat{q}=\hat{r}\Big)=\frac{\left(\hat{r}-p\right)N+1-2p}{(N+1)(N+2)(1-p)}\,.$$ For $p=\frac{1}{2}$, we get $$\mu=\frac{\left(2\hat{r}-1\right)N}{(N+1)(N+2)}\,.$$
Now, $$\text{E}\Big(\chi_q^2\,\big|\,\hat{q}=\hat{r}\Big)=\,\int_0^1\,\left(\frac{r-p}{1-p}\right)^2\,f\left(r,\hat{r}\right)\,\text{d}r\,,$$ or $$\text{E}\Big(\chi_q^2\,\big|\,\hat{q}=\hat{r}\Big)=\frac{\left(\hat{r}-p\right)^2N^2+\left(3\hat{r}(1-2p)-2p+5p^2\right)+\left(2-6p+6p^2\right)}{(N+1)(N+2)(N+3)(1-p)^2}\,.$$ Ergo, $$ \begin{align}\sigma:=\sqrt{\text{Var}\Big(\chi_q^2\,\big|\,\hat{q} =\hat{r}\Big)}=\frac{\sqrt{\tau}}{(N+1)(N+2)\sqrt{N+3}(1-p)}\,,\end{align}$$ where $$ \begin{align}\tau&:=(\hat{r}-p)^2N^4+\left(2\hat{r}^2+(3-10)p\hat{r}-2p+7p^2\right)N^3 \\&\phantom{abcdef}-\left(\hat{r}^2+(7-12p)\hat{r}+2-10p+16p^2\right)N^2+\left(5-12p+12p^2\right)N+1\,. \end{align}$$ If $p=\frac{1}{2}$, we have $$\sigma=\frac{\sqrt{(2\hat{r}-1)^2N^4+\left(8\hat{r}^2-8\hat{r}+3\right)N^3-\left(\hat{r}^2-\hat{r}-1\right)N^2+8N+4}}{(N+1)(N+2)\sqrt{N+3}}\,.$$
If the estimated skill ratio is $\hat{\chi}=\frac{\hat{r}-p}{1-p}$, then the skillfulness can be defined by $$\hat{S}:=\frac{\hat{\chi}-\mu}{\sigma}\,.$$ Fix $p=\frac{1}{2}$.
(1) When $N=10^2$ and $\hat{r}=1$, then $\hat{S}\approx 10.2$.
(2) When $N=10^4$ and $\hat{r}=\frac{9}{10}$, then $\hat{S}\approx 100.02$.
(3) When $N=10^6$ and $\hat{r}=\frac{8}{10}$, then $\hat{S}\approx 1000$.
(4) When $N=10^9$ and $\hat{r}=\frac{7}{10}$, then $\hat{S}\approx 31623$.
(5) When $N=10^{10}$ and $\hat{r}=\frac{6}{10}$, then $\hat{S}\approx 100000$.
It seems like $\hat{S}$ goes to $\sqrt{N}$ very quickly when $\hat{r}$ starts to exceed $p$. See the plot of $\hat{S}$ versus $\hat{r}$ for $p=\frac{1}{2}$ and $N=100$ below.

As mentioned in the first paragraph, it should be better if $q$ is assumed to be uniformly distributed on $[p,1]$. Here are some calculations with the modified distribution of $q$ under $p=\frac{1}{2}$:
(1) $N=10^2$ and $\hat{r}=1$ yield $\hat{S}\approx 7.178$;
(2) $N=10^4$ and $\hat{r}=\frac{9}{10}$ yield $\hat{S}\approx 70.79$;
(3) $N=10^6$ and $\hat{r}=\frac{8}{10}$ yield $\hat{S}\approx 707.1$;
(4) $N=10^{9}$ and $\hat{r}=\frac{7}{10}$ yield $\hat{S}\approx 22361$;
(5) $N=10^{10}$ and $\hat{r}=\frac{6}{10}$ yield $\hat{S}\approx 70711$.
Note that $\hat{S}$ goes to $\sqrt{\frac{N}{2}}$ very quickly. See the plots of $\hat{S}$ against $\hat{r}$ for $p=\frac{1}{2}$ and $N=100$ (on top) as well as $N=1000$ (at the bottom) below.
