WolframAlpha says that $\prod_{i=1}^{n!}i!=G(x!+2)$, where $G$ is the Barnes-G-function. We can use the asymptotic expansion of $G$ from its Wikipedia article with $z=n!+1$ to find an approximation for your product. The expansion goes on even further so you could make it more accurate if you wanted.
$$\small\prod_{i=1}^{n!}i!\sim\exp\left[\frac{1}{12}-\ln(A)+\frac{n!+1}{2}\ln(2\pi)+\left(\frac{(n!+1)^2}{2}-\frac{1}{12}\right)\ln(n!+1)-\frac{3}{4}(n!+1)^2\right]\quad *$$
I've shown its accuracy for a few values of $n$ in the following table.
$$\begin{array}{|c|c|c|c|} \hline n & \text{Exact} & \text{Approximate} & \text{Relative Error}\\ \hline 3 & 2.488\times10^7 & 2.489\times10^7 & 4.02\times10^{-4} \\ \hline 4 & 1.174\times10^{243} & 1.174\times10^{243} & \approx0 \\ \hline 5 & 1.569\times10^{10\,526} & 1.569\times10^{10\,526} & \approx0 \\ \hline \end{array}$$
So there's a great approximation to your product.
* Where $A=1.28\ldots$ is the Glaisher–Kinkelin constant.
I also tried to make an approximation by adapting Stirling's approximation but it didn't go perfectly. I'll share it here for anyone else to use, if they can,
$$\begin{align} p=\mathrm{sf}(n!)&=\prod_{i=1}^{n!}i! \\ \ln(p)&=\sum_{i=1}^{n!}\ln(i!) \\ \sum_{i=1}^{n!}\left[i\ln\left(\frac{i}{e}\right)+1\right]\leq\ln(p)&\leq\sum_{i=1}^{n!}\left[(i+1)\ln\left(\frac{i+1}{e}\right)+1\right]\quad** \\ e^{n!+\sum_{i=1}^{n!}i\ln\left(\frac{i}{e}\right)}\leq p&\leq e^{n!+\sum_{i=1}^{n!}(i+1)\ln\left(\frac{i+1}{e}\right)} \\ e^{n!}\prod_{i=1}^{n!}e^{i\ln\left(\frac{i}{e}\right)}\leq p&\leq e^{n!}\prod_{i=1}^{n!}e^{(i+1)\ln\left(\frac{i+1}{e}\right)} \\ e^{n!}\prod_{i=1}^{n!}\left(\frac{i}{e}\right)^i\leq p&\leq e^{n!}\prod_{i=1}^{n!}\left(\frac{i+1}{e}\right)^{i+1} \\ \frac{e^{n!}}{e^1\cdot e^2\cdot\ldots \cdot e^{n!}}\prod_{i=1}^{n!}i^i\leq p&\leq \frac{e^{n!}}{e^2\cdot e^3\cdot\ldots \cdot e^{n!+1}}\prod_{i=1}^{n!}(i+1)^{i+1} \\ e^{n!-\frac{n!(n!+1)}{2}}H(n!)\leq p&\leq e^{n!-\frac{n!(n!+1)}{2}-1}H(n!+1)\quad*** \end{align}$$
We can take the geometric mean of these bounds to get an approximation for $p$. I tried it with an arithmetic mean but the bounds are so far apart that the arithmetic mean has roughly the same exponent as the upper bound,
$$ \begin{align} p&\approx H(n!)\left(e^{\frac{n!(1-n!)}{2}}e^{\frac{n!(1-n!)-1}{2}}(n!+1)^{n!+1}\right)^{1/2} \\&\approx H(n!)(n!+1)^\frac{n!+1}{2}\left(e^{n!(1-n!)-1/2}\right)^{1/2} \\&\approx H(n!)(n!+1)^\frac{n!+1}{2}e^\frac{2n!(1-n!)-1}{4} \end{align} $$
However, these steps could equally have been applied to the superfactorial, and replacing the superfactorial with the hyperfactorial isn't much better, so in a sense this work is redundant, though we could now try asymptotic approximations to $H(n)$. It's difficult to see how accurate this approximation is graphically, since neither curve fits easily onto a graph. Regardless, for $n=3,4,5$, the exact value of $p$ and its approximation are shown in the following table:
$$\begin{array}{|c|c|c|c|} \hline n & \text{Exact} & \text{Approximate} & \text{Relative Error} & \text{Calculation} \\ \hline 3 & 2.488\times10^7 & 8.715\times10^8 & 34.0 & \text{http://bit.ly/2cwYgcB} \\ \hline 4 & 1.174\times10^{243} & 1.772\times10^{249} & 1.51\times10^6 &\text{http://bit.ly/2cIND7Y} \\ \hline 5 & 1.569\times10^{10\,526} & 5.180\times10^{10\,556} & 3.30\times10^{30} &\text{http://bit.ly/2cIwjl9}\\ \hline \end{array}$$
Is it a good approximation? No, in fact the relative error is growing so it seems to be diverging. But it begins reasonably well and it's a start. Maybe someone else can adapt it to make it work.
** By the derivation of Stirling's approximation.
*** Where $H(x)$ is the Hyperfactorial function.