6
$\begingroup$

I don't know where to begin to calculate the expectation value of the random variable $1/V$, where $V$ is a random variable with chi-square distribution $\chi^2(\nu)$.

Could somebody help me?

$\endgroup$
0

3 Answers 3

12
$\begingroup$

The pdf of a chi-square distribution is $$\frac{1}{2^{\nu/2} \Gamma(\nu/2)} x^{\nu/2-1} e^{-x/2}.$$

So you want to calculate $$\int_0^{\infty} \frac{1}{x} \frac{1}{2^{\nu/2} \Gamma(\nu/2)} x^{\nu/2-1} e^{-x/2} dx = \int_0^{\infty} \frac{1}{2^{\nu/2} \Gamma(\nu/2)} x^{\nu/2-2} e^{-x/2} dx.$$

Rewrite the integrand so that it is the pdf of a $\chi^2(\nu-2)$ random variable, which will then integrate to 1. The leftover constant factor will be the expected value you're looking for.

If you want a more detailed hint, just ask.

$\endgroup$
1
  • 1
    $\begingroup$ The expectation of the inverse chi-square is $\frac{1}{\nu-2}$. How can I reach it result from your derivation? $\endgroup$ Commented Sep 25, 2017 at 14:02
5
$\begingroup$

I try to help this question. A random variable $X$ with inverse chi-square distribution has p.d.f

$$\frac{1}{2^{\frac{v}{2}} \Gamma(\frac{v}{2})} x^{-\frac{v}{2}-1} exp\Big(-\frac{1}{2x}\Big), x>0$$

Since it is a proper distribution, we have

$$\int_0^{\infty} x^{-\frac{v}{2}-1} exp\Big(-\frac{1}{2x}\Big)dx=1 \rightarrow 2^{\frac{v}{2}} \Gamma(\frac{v}{2})$$

Therefore, the expectation for inverse chi-square distribution is:

$$E(X) = \int_0^{\infty} x \cdot \frac{1}{2^{\frac{v}{2}} \Gamma(\frac{v}{2})}x^{-\frac{v}{2}-1} exp\Big(-\frac{1}{2x}\Big)dx = \frac{1}{2^{\frac{v}{2}} \Gamma(\frac{v}{2})} \int_0^{\infty} x^{-\frac{v-2}{2}-1} exp\Big(-\frac{1}{2x}\Big)dx$$

$$\frac{1}{2^{\frac{v}{2}} \Gamma(\frac{v}{2})} \cdot 2^{\frac{v-2}{2}}\cdot \Gamma\Big(\frac{v-2}{2}\Big) = \frac{1}{2 \cdot \frac{v-2}{2}} = \frac{1}{v-2}$$

$$E(X^2) = \int_0^{\infty} x^2 \cdot \frac{1}{2^{\frac{v}{2}} \Gamma(\frac{v}{2})}x^{-\frac{v}{2}-1} exp\Big(-\frac{1}{2x}\Big)dx = \frac{1}{2^{\frac{v}{2}} \Gamma(\frac{v}{2})} \int_0^{\infty} x^{-\frac{v-4}{2}-1} exp\Big(-\frac{1}{2x}\Big)dx$$

$$\frac{1}{2^{\frac{v}{2}} \Gamma(\frac{v}{2})} \cdot 2^{\frac{v-4}{2}}\cdot \Gamma\Big(\frac{v-4}{2}\Big) = \frac{1}{2^2 \cdot \frac{v-2}{2} \cdot \frac{v-4}{2}} = \frac{1}{(v-2)\cdot (v-4)}$$

Therefore, the variance of inverse chi-square distribution is:

$$V(X) = E(X^2) - [E(X)]^2 = \frac{1}{(v-2)\cdot (v-4)} - \Big(\frac{1}{v-2}\Big)^2 = \frac{}{}\frac{2}{(v-2)^2 (v-4)}$$

Hope this helps!

$\endgroup$
1
  • 2
    $\begingroup$ Excellent solution! $\endgroup$ Commented Oct 3, 2020 at 10:56
4
$\begingroup$

Let $V=z_1^2+...+z_\nu^2$ with the $z_i\sim N(0,1)$. By integration by parts writing the density of $z_i$, for a differentiable function $$E[z_i f(z_1,...,z_\nu)] = E[\frac{\partial}{\partial z_i} f(z_1,...,z_\nu)].$$ Applying this to $f=1/V$ gives for each $i$ $$ E[\frac{z_i^2}{V}] = E[\frac{1}{V}] - E[\frac{2z_i^2}{V^2}]. $$ Summing over $i=1,...,\nu$ gives $1 = \nu E[1/V] - 2E[1/V]$ so that $E[1/V] =1/(\nu-2)$.


For the second moment of $1/V$ (or variance of $1/V$), similarly $$ E[z_i^2/V^2] = E[1/V^2] - 4 E[z_i^2/V^3] $$ and summing over $i=1,...,\nu$ gives $E[1/V] = \nu E[1/V^2] - 4[V^2]$ hence $E[1/V^2]=\frac{1}{(n-2)(n-4)}$.

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.