Consider the two distributions $$F_y(w) = \begin{cases} 0 \ &\text{if} \ w < 1\\ w-1 \ &\text{if} \ 1\leq w < 2\\ 1 \ &\text{if} \ 2\leq w \end{cases}$$ and $$F_z(w) = \begin{cases} 0 \ &\text{if} \ w < 0\\ \frac{1}{3}w \ &\text{if} \ 0\leq w < 3\\ 1 \ &\text{if} \ 3\leq w \end{cases}$$ Determine whether or not $F_y$ or $F_z$ is first order or second order stochastically dominates the other.
Attempted Solution
Suppose $w = 1.6$ then $F_y(w) = .6$ and $F_z(w) = .533$ so $F_y(w) > F_z(w)$ when $w = 1.6$. But if $w = 1.5$ then $F_y(w) = F_z(w)$, so $F_y$ nor $F_z$ is first order stochastically dominates the other.
I am not sure how to show if second order stochastically dominance applies, any suggestions are greatly appreciated.