1
$\begingroup$

Can you see if (a), (b) and (c) ar correct, and give a hint for (d). Thabk you very much.

Let $(a_n)$ be a bounded sequence of real numbers.

(a) Show that the series $\sum\limits_{n=1}^{\infty}\dfrac{a_n}{n^s}$ is absolutely convergent if $s>1$.

(b) Give an example of a bounded sequence $(a_n)$ such that, the sequence above is divergent for all $s\leq 1$.

(c) Show that for $a_n=(-1^n)$, the series above is conditionally convergent for all $s\in (0,1]$.

(d) Give another example of a bounded sequence $(a_n)$ such that $$\lim_{n\to \infty}\sup |a_n|>0$$

and the series above is absolutely convergente for all $s>0$.

My solution

(a) There is $M>0$ such that $|a_n|\leq M$, for all $n$, so $$\left| \dfrac{a_n}{n^s}\right|\leq \dfrac{M}{n^s}$$ then, by comparison, the series at the right converges iff $s>1$.

(b) Let $a_n=1$, for $n$ even, and $a_n=0$ for $n$ odd

$$\displaystyle\sum_{n=1}^{\infty}\dfrac{a_n}{n^{\color{red}s}}=\displaystyle\sum_{n=1}^{\infty}\dfrac{1}{(2n)^s}=\dfrac{1}{2^s}\displaystyle\sum_{n=1}^{\infty}\dfrac{1}{n^s}$$ this is divergent for $s\leq 1$.

(c) Let $a_n=(-1)^n$, then by Leibnitz' criterium $$\displaystyle\sum_{n=1}^{\infty}\dfrac{a_n}{n^s}=\displaystyle\sum_{n=1}^{\infty}\dfrac{(-1)^n}{n^s}$$ if $s\in(0,1]$, then $\dfrac{1}{n^s}$ is decreasing and goes to zero. so it is convergent, but not absolutely convergent.

$\endgroup$
2
  • $\begingroup$ Why you cannot just take $a_n=1$ for b) ? $\endgroup$ Commented Jan 31, 2017 at 4:28
  • $\begingroup$ @momo you are right, hehe $\endgroup$ Commented Jan 31, 2017 at 4:36

2 Answers 2

1
$\begingroup$

For d) you might take take $a_n=1$, if $n=2^k$ and zero otherwise.

Then

$$\sum_{n=1}^\infty\frac{a_n}{n^s}=\sum_{k=0}^\infty\frac{1}{(2^s)^k}$$

which is a convergent geometric series. Also it is obvious that:

$$\lim_{n\to\infty}\sup_{k\ge n} |a_n|=1$$

$\endgroup$
0
0
$\begingroup$

If we can find a positive sequence $\{k_n\}$ such that

$$(1).......................\lim\limits_{n\to \infty}k_n = 0 \text{ and } \lim\limits_{n\to \infty}n^{k_n} = + \infty,$$

then (d) can be showed.

Let $k_n = \frac{1}{\ln(\ln n)}$, one can check that $\{k_n\}$ satisfies (1). Let $$ M=\bigl\{m\in \mathrm{N} \mid \text{there exists } k \in\mathrm{N} \text{ such that } m=\min\{n \in \mathrm{N} \mid n^{\frac{1}{\ln(\ln n)}} > 2^k\} \bigr\}, $$ where $\mathrm{N}$ is the set of natrual numbers. Define $$a_n = \begin{cases}1, \quad &n\in M, \\ 0, &otherwise, \end{cases}$$ then $a_n$ satisfies (d).

In fact, since $$ \sum_n \frac{a_n}{n^{\frac{1}{\ln(\ln n)}}} \le \sum_k \frac{1}{2^k} = 1,$$ $\sum\limits_n \frac{a_n}{n^{\frac{1}{\ln(\ln n)}}} $ converges absolutely. For $s>0$ by $\lim\limits_{n\to \infty}n^{k_n} = + \infty$, we can take sufficiently large $n$ such that $\frac{1}{n^{\frac{1}{\ln(\ln n)}}} > \frac{1}{n^s}$, then (d) follows by comparison.

$\endgroup$
0

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.