Can you see if (a), (b) and (c) ar correct, and give a hint for (d). Thabk you very much.
Let $(a_n)$ be a bounded sequence of real numbers.
(a) Show that the series $\sum\limits_{n=1}^{\infty}\dfrac{a_n}{n^s}$ is absolutely convergent if $s>1$.
(b) Give an example of a bounded sequence $(a_n)$ such that, the sequence above is divergent for all $s\leq 1$.
(c) Show that for $a_n=(-1^n)$, the series above is conditionally convergent for all $s\in (0,1]$.
(d) Give another example of a bounded sequence $(a_n)$ such that $$\lim_{n\to \infty}\sup |a_n|>0$$
and the series above is absolutely convergente for all $s>0$.
My solution
(a) There is $M>0$ such that $|a_n|\leq M$, for all $n$, so $$\left| \dfrac{a_n}{n^s}\right|\leq \dfrac{M}{n^s}$$ then, by comparison, the series at the right converges iff $s>1$.
(b) Let $a_n=1$, for $n$ even, and $a_n=0$ for $n$ odd
$$\displaystyle\sum_{n=1}^{\infty}\dfrac{a_n}{n^{\color{red}s}}=\displaystyle\sum_{n=1}^{\infty}\dfrac{1}{(2n)^s}=\dfrac{1}{2^s}\displaystyle\sum_{n=1}^{\infty}\dfrac{1}{n^s}$$ this is divergent for $s\leq 1$.
(c) Let $a_n=(-1)^n$, then by Leibnitz' criterium $$\displaystyle\sum_{n=1}^{\infty}\dfrac{a_n}{n^s}=\displaystyle\sum_{n=1}^{\infty}\dfrac{(-1)^n}{n^s}$$ if $s\in(0,1]$, then $\dfrac{1}{n^s}$ is decreasing and goes to zero. so it is convergent, but not absolutely convergent.